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Selecting the solution with the largest or smallest mean of a primary performance measure from a finite set of

solutions while requiring secondary performance measures to satisfy certain constraints is called constrained

selection of the best (CSB) in the simulation ranking and selection literature. In this paper, we consider

CSB problems whose secondary performance measures must satisfy probabilistic constraints, and we call

such problems chance constrained selection of the best (CCSB). We design procedures that first check the

feasibility of all solutions and then select the best among all of the sample feasible solutions; and we prove

the statistical validity of these procedures for variations of the CCSB problem under the indifference-zone

formulation. Numerical results show that the proposed procedures can efficiently handle CCSB problems

with up to 100 solutions each with 5 chance constraints.
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1. Introduction

Ranking and selection (R&S) procedures are often used to solve simulation optimization problems

with a finite and small number of solutions (i.e., no more than 1000 solutions). In these problems,

the (random) performance of a solution may be observed by running a computer simulation exper-

iment. The objective is often to find the solution with the best mean performance. Assuming we

can afford the computational effort to simulate all solutions, then the search is exhaustive and the

central problem is controlling statistical selection error (see, for instance, the review of Kim and
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Nelson (2006)). The more efficiently we can control selection error, the larger the problem that can

be handled in this way.

Most of the R&S procedures in the literature focus on only one performance measure and select

the best solution based solely on it. In many practical situations, however, decision makers are

interested in multiple performance measures. For instance, in inventory management, managers

are concerned with expected cost but also the chance of a stock out; and in clinic scheduling,

doctors are interested in their profits as well as the waiting times of their patients. A natural

approach to handling multiple performance measures is to identify a primary one (e.g., cost and

profit, respectively, in the examples) and maybe several secondary ones (e.g., probability of stock

out and waiting times, respectively, in the examples) and then to optimize the expected value of

the primary performance measure while requiring the secondary performance measures to satisfy

one or more quality-of-service (QoS) constraints. This approach has been widely adopted in the

stochastic programming literature (see, for instance, Birge and Louveaux (1997)). In the context of

R&S, we call this formulation constrained selection of the best (CSB) and it has been studied only

recently by Andradóttir and Kim (2010) and Healey et al. (2013). They formulate the problem as

maximizing the expected value of the primary performance measure while requiring the expected

values (means) of secondary performance measures to satisfy certain constraints. We call their

formulation expectation constrained selection of best (ECSB). To solve the problem they assume

that the primary and secondary outputs are jointly normally distributed with an unknown mean

vector and covariance matrix. Very recently, Hunter and Pasupathy (2013), Hunter et al. (2012),

Pasupathy et al. (2014) and Lee et al. (2012) also consider the ECSB problem. The goal of the

first three papers is to allocate a simulation budget to all solutions to maximize the asymptotic

rate of identifying the optimal feasible solution, while the last paper designs an easy-to-implement

budget allocation rule under the Optimal Computing Budget Allocation (OCBA) formulation (see,

for instance, Chen (1996) and Chen et al. (2000) for seminal work on the OCBA approach).

In this paper we consider a special case of the ECSB problem which we call chance constrained

selection of the best (CCSB): maximize (or minimize) the expected value of the primary perfor-

mance measure while requiring the secondary performance measures to satisfy constraints with at

least a given probability. For instance, in the inventory example managers may choose to minimize

the expected cost while requiring the probability of a stock out to be below 5%; and in the clinic

scheduling example doctors may choose to maximize the expected profit while requiring the prob-

ability of a patient waiting for more than 30 minutes to be below 10%. Since a probability can

be written as the expectation of an indicator function a CCSB is a form of ECSB. However, we

know that the distribution of an indicator function is Bernoulli, so we can use this fact to solve

a CCSB problem more efficiently than a generic ECSB problem and without any assumption as
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to the distribution of the secondary output measures which makes our procedure more robust.

Exploiting this insight is a central contribution of the paper.

A CCSB representation of constraints is sometimes more reasonable than an ECSB formulation.

For instance, in many problems in the service industry, the primary performance measures are

financial outcomes, such as profit and cost; hence it makes sense to analyze their mean values. The

secondary performance measures, on the other hand, typically reflect QoS; therefore it makes more

sense to analyze the probability of achieving a certain service standard, where the standard may be

imposed internally by service commitments or externally by rules or regulations. In the stochastic

programming literature, chance constrained programming was first formulated and considered by

Charnes et al. (1958) and since then has been adopted as one of the most natural ways to handle

stochastic constraints. For a recent review of the topic, refer to Prékopa (2003).

To design statistically valid procedures for CCSB problems, we take an indifference-zone

approach initially proposed by Bechhofer (1954). We first consider the case where there is only one

secondary performance measure, thus only a single chance constraint. We design a two-stage proce-

dure: In the first stage we check the feasibility of all solutions and calculate the sample variances of

the primary performance measures of all sample-feasible solutions using the available observations

at the end of the stage; and in the second stage we select the best solution from all sample-feasible

solutions. A similar two-stage approach called Procedure AK was proposed by Andradóttir and

Kim (2010). The statistical validity of Procedure AK cannot be proved, mainly because the sample

sizes of all sample-feasible solutions may be correlated with their second-stage sample means and

the correlations are difficult to quantify in general (Andradóttir and Kim 2010). We solve this

problem by designing feasibility tests that allocate a constant and fixed number of observations

to all sample-feasible solutions,1 thus preserving the statistical validity of the second stage. This

is possible because we take advantage of the structure of the chance constraint and formulate the

feasibility checking as a hypothesis test on a probability with explicit control on both Type I and

Type II errors. Once the feasibility tests are designed, we can use the fully sequential Procedure

KN of Kim and Nelson (2001) in the second stage to select the best feasible solution.

We next consider the case of multiple secondary performance measures. For instance, a hospital

may care about the waiting times of various classes of patients (e.g., regular patients and critical

patients); and a call center may care about waiting times of callers as well as the work loads of

agents. One of the major difficulties in handling multiple secondary performance measures is the

inefficiency caused by use of Bonferroni’s inequality to ensure joint satisfaction of all constraints.

When the constraints are on the expected values of the secondary performance measures, Batur

1 However, the numbers of observations for sample-infeasible solutions may be constant or random, depending on
whether a fixed-sample procedure or a sequential procedure is used for feasibility checking.
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and Kim (2010) allocate α/(mk) of the total error α to the Type I and Type II errors for feasibility

checking, where m is the number of constraints and k is the number of solutions. We call this a

multiplicative rule because it divides the total error α by m× k. This makes feasibility checking

terribly conservative even for problems of moderate size; e.g., k= 100 and m= 10.

In this paper, we develop two formulations to handle multiple secondary performance measures.

In the first formulation, we group all secondary performance measures together into a joint chance

constraint which requires all secondary performance measures to be above their corresponding

standards simultaneously with a given probability. If the secondary performance measures reflect

QoS of the solution, using a joint chance constraint is often a reasonable formulation of the problem.

In the hospital example, for instance, the hospital authority may require that the probability

that regular patients wait less than 60 minutes and critical patients wait less than 10 minutes to

simultaneously be above 95%. Thus, the multiple secondary performance measures form only one

chance constraint (avoiding the use of Bonferroni’s inequality on the constraint) and the problem

can be solved as a single secondary performance measure. In the stochastic programming literature,

this formulation is also known as a joint chance constrained program; it was first proposed by Miller

and Wagner (1965) and has been studied extensively since then (see, for instance, the references

of Hong et al. (2011)).

We also consider a formulation where there are multiple chance constraints for the secondary

performance measures. Under this formulation, we carefully examine the multiplicative rule of

Batur and Kim (2010) and find it unnecessary. Indeed, an additive rule that allocates an error of

α/(m+k−1) to checking each constraint is sufficient where α is the total error that includes both

the feasibility checking and selection steps. When m> 1, the savings of simulation effort due to

switching from the multiplicative rule to the additive rule is often quite significant. It is worthwhile

observing that this additive rule can also be applied to the procedures of Andradóttir and Kim

(2010) as well as Batur and Kim (2010) to make them more efficient.

Our procedures are related to Bernoulli selection problems because we exploit properties of

Bernoulli random variables in the feasibility checking. In a Bernoulli selection problem, the goal

is to choose the solution with the largest probability of success (see, for instance, Chapter 7 of

Bechhofer et al. (1995) for the related literature). And the hypothesis-test formulation used in our

feasibility checking is equivalent to the comparison-with-a-standard problem, as pointed out by Xu

et al. (2010). Therefore, feasibility checking is also related to the literature on comparison with a

standard (see, for instance, Nelson and Goldsman (2001) and Kim (2005)).

Kim and Nelson (2001) proposed a fully sequential selection-of-the-best procedure known as

Procedure KN that allows unknown and unequal variances and the use of common random num-

bers (CRN). Procedure KN is particularly suitable for computer simulation experiments because
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simulation observations are often obtained sequentially on computers. In our chance constrained

procedures we use KN in the second stage to select the best solution from a group of sample-feasible

solutions. Even though we focus only on two-stage procedures with feasibility test followed by selec-

tion of the best in this paper, there exists other type of procedures in the literature. For instance,

Procedure AK+ in Andradóttir and Kim (2010) performs feasibility checking and optimality check-

ing simultaneously to achieve higher efficiency. However, the statistical validity of Procedure AK+

cannot be guaranteed even under the normality assumption on both primary and secondary per-

formance measures. And while simultaneously running AK+ was shown to be more efficient than

two-stage AK, it is not always more efficient than our two-stage procedure when applied to CCSB

problems, as shown in some numerical experiments in Section 6.1 and Appendix A. In addition,

there are practical problems for which it is useful to identify all feasible solutions. A byproduct

of our procedure is a set of sample-feasible solutions with a statistical guarantee. Simultaneously

checking feasibility and optimality means that feasible solutions are likely to be eliminated.

Even though we consider only indifference-zone selection procedures in this paper, we believe

that the CCSB problem is also an interesting and important problem for Bayesian R&S (see, for

instance, Section 1 of Frazier (2010) for a good overview). In addition to the CSB formulation for

R&S problems with multiple performance measures, Butler et al. (2001) applied multiple attribute

utility theory to address multi-objective problems and Lee et al. (2010) incorporated the Pareto

optimality concept into a R&S scheme to deliver a non-dominated set of solutions.

The remainder of the paper is organized as follows. We formulate the CCSB problem in Section 2.

In Section 3, we develop two feasibility checking procedures, one of fixed sample size and the other

sequential. We combine the sequential feasibility checking procedure with Procedure KN into a new

two-stage sequential procedure for CCSB and discuss its error allocation and statistical validity in

Section 4. In Section 5, we propose two formulations and procedures to handle multiple secondary

performance measures, followed by some numerical studies in Section 6. We conclude the paper in

Section 7.

2. Problem Formulation and Solution Overview

Suppose that there are k solutions from which we need to select the best feasible solution. LetXi and

Yi denote the primary and secondary performance measures, respectively, observed from running

a simulation experiment at solution i, i = 1,2, . . . , k. Initially we consider only one secondary

performance measure, deferring the case of multiple secondary performance measures to Section 5.

We formulate the CCSB problem as follows:

max
i=1,2,...,k

E(Xi) s.t. Pr{Yi ≥ 0} ≥ 1− γ, (1)
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where 0< γ < 1/2 is the upper bound of the violation probability and is often set as 0.01, 0.05 or

0.1. If one is interested in Yi ≥ b or Yi ≤ b instead of Yi ≥ 0, then Yi can be redefined to fit into our

formulation.

Suppose that we may run simulation experiments at solution i to observe independent obser-

vations of (Xi, Yi), denoted as (Xij, Yij), j = 1,2, . . . for all i = 1,2, . . . , k. However, Xij and Yij

may be dependent as they are the outputs of a single simulation run. Moreover, we do not need

(Xij, Yij), i= 1,2, . . . , k, to be independent. Therefore, CRN may be used to induce positive cor-

relations among (Xij, Yij), i= 1,2, . . . , k, to make the comparisons sharper. Furthermore, for any

i= 1,2, . . . , k and j = 1,2, . . ., we assume that Xij ∼N(µi, σ
2
i ) with unknown µi and σ2

i , but we do

not impose any specific distributional assumptions on Yij.

Andradóttir and Kim (2010) formulate the ECSB problem as follows:

max
i=1,2,...,k

E(Xi) s.t. E(Yi)≥ 0,

and they assume that (Xi, Yi) follows a bivariate normal distribution. Even though Pr{Yi ≥ 0}=

E
[
1{Yi≥0}

]
, where 1{·} is an indicator function, the formulation of CCSB is different from the

formulation of ECSB, because 1{Yi≥0} is a Bernoulli random variable instead of a normal random

variable and it has many nice properties that facilitate feasibility checking.

Both ECSB and CCSB are reasonable formulations of constrained selection problems. Depending

on practical considerations, one may be more suitable than the other. When Yi is a performance

measure related to quality of service, for instance, it may make more sense to use the CCSB

formulation, where Yi ≥ 0 and Yi < 0 define the events of satisfactory service and unsatisfactory

service, respectively. Then the chance constraint requires customer satisfaction with a probability

at least 1− γ, which is a common approach to defining QoS requirements.

A high-level overview of our CCSB procedure follows, with the key contributions of our approach

highlighted:

Initialization: Initialization includes selecting an overall statistical error allowance, a feasibility

tolerance parameter for constraint checking, and an indifference-zone parameter for selection of

the best. How the overall error is allocated between feasibility checking and selection of the best is

central to the validity and efficiency of the procedure.

Feasibility Test: Each solution is simulated and declared either feasible or infeasible with a

statistical guarantee of correctness up to the feasibility tolerance. Key to our procedure is that

the feasibility test simulates all solutions that are declared feasible for a fixed, prespecified number

of observations; this is possible because of the Bernoulli distribution of chance constraints. The

feasibility test is introduced in Section 3.
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Selecting the Best: An indifference-zone procedure is applied to select the best from among

those solutions that are declared feasible, using the data from the feasibility test as the first stage

of the procedure. The fixed, prespecified feasibility-stage sample size avoids dependence between the

first and subsequent stages that would invalidate the correct-selection guarantee. Our procedures

are described in Sections 4–5.

3. Feasibility Tests

The constraint in Problem (1) is equivalent to Pr{Yi < 0} ≤ γ. Let pi = Pr{Yi < 0} for all i =

1,2, . . . , k. Checking the feasibility of solution i is essentially a hypothesis test on a probability,

which may be formulated as

H0 : pi >γ vs. H1 : pi ≤ γ. (2)

Therefore, rejecting H0 indicates that solution i is feasible. Notice that the presumption of any

hypothesis test is that H0 is true and the goal of the hypothesis test is to collect enough evidence

to reject H0. Therefore, in our hypothesis, the presumption is that solution i is infeasible and our

goal is to use observations of Yi to claim that solution i is feasible. This represents a conservative

viewpoint towards feasibility, and it implies that claiming an infeasible solution feasible is more

harmful than claiming a feasible solution infeasible. If one takes the opposite view, the hypothesis

test may be formulated as H0 : pi ≤ γ vs. H1 : pi >γ.

Because Type I and Type II errors are both relevant, we want to determine an appropriate

sample size n such that we achieve the following requirements on Type I and Type II errors:

I : Pr{reject H0 | pi >γ+ δγ1} ≤ β1, (3)

II : Pr{do not reject H0 | pi ≤ γ− δγ2} ≤ β2, (4)

where δγ1 , δγ2 ≥ 0 may be viewed as tolerance levels on the constraints. Notice that as long as

β1 + β2 < 1 we cannot set δγ1 = 0 and δγ2 = 0 simultaneously and still control both Type I and

Type II errors as desired. In fact, it is impossible to statistically guarantee identifying feasible

solutions, even asymptotically, when stochastic constraints are tight; see Chapter 8 of Nelson

(2013). Objectives (3) and (4) solve this problem by employing an indifference-zone formulation.

As we take a conservative point of view towards feasibility in this paper, hereafter we set δγ1 = 0

and δγ2 = δγ > 0. Therefore, if solution i is infeasible, i.e., pi > γ, it is declared a feasible solution

with a probability less than β1; if solution i is clearly feasible, i.e., pi ≤ γ − δγ , it is declared as

an infeasible solution with a probability less than β2; if a solution is too close to the feasibility

boundary, i.e., γ − δγ < pi ≤ γ, then we do not have an explicit control of its Type II error, as

shown in Figure 1. Notice that the feasibility requirement is similar to that of Andradóttir and Kim
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Figure 1 The power function β(θ) = Pr{reject H0 | pi = θ}. Point A is used in Section 6.3.

(2010), except that we take a more restricted view on infeasibility. Once a solution is infeasible,

no matter how little it violates the constraint, we want to declare it infeasible with a controlled

error. However, if a solution is feasible but with γ− δγ < pi ≤ γ, we may declare it infeasible with

a probability that is larger than β2, and this may cause the test to reject feasible solutions. To

alleviate this problem, one can reduce the tolerance level δγ . However, reducing δγ may lead to an

increase of the required sample size to make a decision.

As pointed out by Xu et al. (2010), if β1 = β2 in Equations (3) and (4), the hypothesis test (2)

becomes a special case of comparisons with a standard (see, for instance, Nelson and Goldsman

(2001) and Kim (2005)). Indeed, Andradóttir and Kim (2010) also treat feasibility checking as a

comparison with a standard and use the procedure of Kim (2005) to conduct the comparison. To

follow this convention, we also set β1 = β2 = β but the results can easily be extended to cases where

β1 6= β2.

3.1. Fixed-Sample-Size and Sequential Feasibility Tests

Suppose that we have {Yi1, Yi2, . . . , Yin} for solution i. Let Zn =
∑n

j=1 1{Yij<0} (we do not make Zn

a function of solution i since the discussion that follows applies to any fixed solution). An approach

to testing the Hypothesis (2) is to determine an integer mβ(n) ∈ {0,1, . . . , n} such that we reject

H0 if Zn ≤mβ(n). To ensure Equation (3), we want

mβ(n) = max{m∈ {0,1, . . . , n} : Pr{Zn ≤m | pi = γ} ≤ β} .

It is easy to show that for all n large enough there will be such an mβ(n). To ensure Equation (4),

we determine the sample size n, denoted as n∗(β), such that

n∗(β) = min{n∈ {0,1, . . .} : Pr{Zn ≥mβ(n) + 1 | pi = γ− δγ} ≤ β} .
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We can show that there exists a solution (mβ(n), n∗(β)) provided β < 1/2 and δγ > 0.

Notice that Zn is distributed according to a binomial distribution with parameters pi and n. Let

F (x;n,p) denote the cumulative distribution function of a binomial distribution with parameters

p and n. Then, for any x∈<,

F (x;n,p) =

bxc∑
i=0

(
n
i

)
pi(1− p)n−i,

where b·c is the floor function that rounds a number down to its nearest integer. We want the

simultaneous solution to

mβ(n) = max{m∈ {0,1, . . . , n} : F (m;n,γ)≤ β} , (5)

n∗(β) = min{n∈ {0,1, . . .} : F (mβ(n);n,γ− δγ)≥ 1−β} . (6)

Therefore, we can design the following procedure to test the feasibility of solution i:

Procedure 1 (Fixed-Sample-Size Feasibility Test)

Step 1 Given β, calculate n= n∗(β) and mβ(n).

Step 2 Run simulation experiments to observe Yi1, Yi2, . . . , Yin for solution i.

Step 3 Let Zn =
∑n

j=1 1{Yij<0}. If Zn ≥mβ(n) + 1, declare solution i infeasible; otherwise, declare

it feasible.

Remark 1. When Procedure 1 is applied to all solutions i= 1,2, . . . , k, all solutions have the

same fixed sample size n∗(β) at the end of the test. Therefore, we call it a fixed-sample-size

feasibility test. Furthermore, the fixed sample size n∗(β) is a predetermined constant and it does

not depend on the observations of Yij, i= 1,2, . . . , k. This property makes Procedure 1 very different

from the feasibility test procedures of Andradóttir and Kim (2010) and Batur and Kim (2010)

where the sample sizes of all solutions are dependent on the observations of Yij, i= 1,2, . . . , k. In

Section 4 we find this property particularly useful in designing statistically valid CCSB procedures.

We have the following theorem on the statistical validity of Procedure 1. The proof of the theorem

is omitted as it is straightforward.

Theorem 1. Suppose that Procedure 1 is used to test Hypothesis (2). Then, Pr{reject H0} ≤ β

if Pr{Yi < 0} ≥ γ and Pr{do not reject H0} ≤ β if Pr{Yi < 0} ≤ γ− δγ.

Since a simulation model typically generates observations sequentially (a replication at a time),

a minor modification may make the feasibility test more efficient. Let Zτ =
∑τ

j=1 1{Yij<0} for all τ ∈

{0,1, . . . , n}. Clearly Zτ ≤Zn for any τ ∈ {0,1, . . . , n}. Then Zτ ≥mβ(n)+1 implies Zn ≥mβ(n)+1.

Therefore, in Procedure 1 we can stop the simulation of solution i and declare it infeasible at the
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sample size τ if Zτ ≥mβ(n) + 1. This type of sequential test is known as a curtailed test and the

curtailed test on a probability (such as the one we use) is one of the very few sequential tests

that never take more samples, and may take fewer samples, than a fixed-sample-size version, thus

“delivering positive benefit at no cost” (Siegmund (1985), page 2). We call this the Sequential

Feasibility Test.

Procedure 2 (Sequential Feasibility Test)

Step 1 Given β, calculate n= n∗(β) and mβ(n). Let τ = 0 and Zτ = 0.

Step 2 Let τ = τ + 1. Run a simulation experiment to observe Yiτ and let Zτ =Zτ−1 + 1{Yiτ<0}.

Step 3 If Zτ ≥mβ(n) + 1, declare solution i infeasible and end the procedure.

Step 4 If τ = n, declare solution i feasible; otherwise, go to Step 2.

Remark 2. When Procedure 2 is applied to all solutions i= 1,2, . . . , k, all sample-feasible solu-

tions (i.e., the solutions that are claimed feasible by the test) have the same fixed sample size

n∗(β) at the end of the test. As noted in Remark 1, this is a very useful property for designing

statistically valid CCSB procedures.

It is interesting to see that both Procedures 1 and 2 can be done in a single stage under our

formulation, thus leading to a constant and fixed sample size for all sample-feasible solutions, while

the feasibility test procedures of Andradóttir and Kim (2010) and Batur and Kim (2010) require two

stages. This is because we use a chance constraint to handle the secondary performance measure.

Thus, under (3)–(4), the distribution of the Bernoulli random variable is known and we may design

a single-stage procedure to check the feasibility. Andradóttir and Kim (2010) and Batur and Kim

(2010), however, use an expectation constraint to handle the secondary performance measure as in

the formulation of ECSB. Under their indifference-zone formulation the means of the performance

measures are known but the variances are not, so their procedures need a first stage to estimate

the unknown variances of the secondary performance measure. Even though these sample variances

are independent of the sample means of the secondary performance measures under the normality

assumption, they may be dependent on the sample means of the primary performance measures.

This makes it difficult to design statistically valid procedures to select the best solution from the

set of sample-feasible solutions (Andradóttir and Kim 2010).

3.2. Calculation of mβ(n) and n∗(β)

Both Procedures 1 and 2 need to calculate the values of mβ(n) and n∗(β). Even though their

values may be calculated using Equations (5) and (6), these calculations cannot be done very

efficiently as n is typically quite large when β and δγ are small. One solution is to use the normal

approximation of a binomial distribution which works well when n is large and γ is not too small
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(a) γ = 0.1, δγ = 0.02 and β ∈ [0.001,0.05].
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(b) β = 0.01, δγ = 0.02 and γ ∈ [0.04,0.20].
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Figure 2 The actual values and normal approximations of mβ(n) and n∗(β).

(Casella and Berger (2002)). Notice that the normal approximation is also a common approach

used in hypothesis tests on a probability (see, for instance, Tamhane and Dunlop (1999)).

Under the normal approximation,

F (x;n,p)≈Φ

(
x−np√
np(1− p)

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution. Let m̃β(n)

and ñ∗(β) denote the continuous approximation of mβ(n) and n∗(β). Let zα = Φ−1(α) for any

0 < α < 1. Notice that zβ = −z1−β. Then, replacing F (m;n, ·) in Equations (5) and (6) by the

normal approximation above, we obtain two inequalities with two variables, m and n. After some

algebra, we have

ñ∗(β) =
z2

1−β

δ2
γ

(√
(γ− δγ)(1− γ+ δγ) +

√
γ(1− γ)

)2

, (7)

m̃β(n) = nγ− z1−β
√
nγ(1− γ),

and we may set mβ(n) = bm̃β(n)c and n∗(β) = dñ∗(β)e.

The normal approximation is very accurate. We plot both the actual and approximated values

in Figure 2 as functions of β and γ. If the exact values of mβ(n) and n∗(β) are required, one can

search near the approximate solution to find the exact solutions mβ(n) and n∗(β).

4. Procedure CCSB

In this section we propose a two-stage procedure. In the first stage, we test the feasibility of all

solutions, and in the second stage, we conduct Procedure KN to select the best from the sample-

feasible solutions. We first present the procedure in Section 4.1 and then discuss its error allocation

and statistical validity in Section 4.2.
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4.1. The Procedure

We propose a two-stage procedure for the CCSB problem. In the first stage, feasibility of all

solutions are tested and sample-infeasible solutions are eliminated. As the sequential procedure

guarantees to reduce the total sample size in the feasibility test, we use it instead of the fixed-

sample-size procedure in the first stage. In the second stage, Procedure KN is conducted to select

the best solution from the set of sample-feasible solution (with some changes in error allocation

that are discussed in Section 4.2). Let α1 be the error allocated to the feasibility test of each

solution, and let α2 be the error allocated to each pairwise elimination for selection of the best;

the choices of α1 and α2 are important and will be described later.

Procedure 3 (Procedure CCSB)

Initialization Select total error allowance 0 < α < 1 − 1/k, indifference-zone parameter δ, and

feasibility tolerance parameter δγ. Choose α1 and α2. Solve for n0 = n∗(α1) and mα1
(n0). Let

h2 = (n0− 1)
[
(2α2)

− 2
n0−1 − 1

]
.

We discuss the choices of α1 and α2 in Section 4.2.

Feasibility Test Let F denote the set of sample-feasible solutions and set F = ∅. Let i= 1.

Step 0 If i > k, where k is the number of solutions, terminate Feasibility Test; otherwise, let

τ = 0, Zτ = 0.

Step 1 Let τ = τ + 1 and F old = F . Take an additional sample (Xiτ , Yiτ ) from solution i and

let Zτ =Zτ−1 + 1{Yiτ<0}.

Step 2 If Zτ ≥mα1
(n0)+1, declare solution i infeasible and go to Step 3; else if τ = n0, declare

solution i feasible, let F = F old ∪{i} and go to Step 3; otherwise, go to Step 1.

Step 3 Let i= i+ 1 and go to Step 0.

Selecting the Best Let I denote the set of solutions still in contention and let I = F . For all

i∈I , calculate

X̄i(n0) =
1

n0

n0∑
`=1

Xi`

and for all i, j ∈I and i 6= j, calculate

S2
ij =

1

n0− 1

n0∑
`=1

(
Xi`−Xj`−

[
X̄i(n0)− X̄j(n0)

])2
. (8)

Notice that X̄i(n0) is the first-stage sample mean of the primary performance measure of solution

i and S2
ij is the first-stage sample variance of the difference between the primary performance

measures of solutions i and j.

Step 0 Set r= n0.
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Step 1 Set I old = I and let

I =
{
i∈I old : X̄i(r)≥ X̄j(r)−Wij(r), for all j ∈I old and j 6= i

}
,

where

Wij(r) = max

{
0,
δ

2r

(
h2S2

ij

δ2
− r
)}

.

Step 2 If |I |= 1, then stop and let the solution whose index is in I be the best; otherwise, let

r= r+ 1, take an additional sample (Xir, Yir) from solution i for all i∈I , and go to Step 1.

Notice that we estimate the variance of the difference between the primary performance measures

of any pair of sample-feasible solutions using Equation (8). Therefore, our procedure allows the use

of CRN to make comparisons between E(Xi) and E(Xj) sharper (Kim and Nelson (2001)). The use

of CRN may also introduce dependence between Yi and Yj. However, because the feasibility test in

Section 3 is a marginal test for each solution individually, the statistical validity of the feasibility

test is not affected when CRN are used. However, CRN was not considered by Andradóttir and

Kim (2010) as they assume that all solutions are simulated independently to achieve a statistical

guarantee for their proposed procedures.

4.2. Error Allocation and Statistical Validity

Let F and F̄ denote the sets of feasible and infeasible solutions, respectively. We do not know

which solutions are included in F and F̄ , but F ∪ F̄ = {1,2, . . . , k} and F ∩ F̄ = ∅. Without loss of

generality, assume that solution 1 (whose identity is unknown to us) is the best feasible solution.

Taking the typical indifference-zone approach in the literature (e.g., Kim and Nelson (2001) and

Andradóttir and Kim (2010)), we formulate the problem as follows,

E(X1) ≥ max
i∈{2,3,...,k}∩F

E(Xi) + δ, (9)

Pr{Y1 ≥ 0} ≥ 1− γ+ δγ . (10)

Therefore, the best solution has an expected primary performance measure that is at least δ better

than all other feasible solutions and has a secondary performance measure that is positive with a

probability at least 1− γ+ δγ .

Let E(i, j) denote the event that solution i eliminates solution j by the end of the second stage of

Procedure CCSB if only those two solutions were considered in isolation. Notice that the event of

correct selection (CS) requires that solution 1 survives the feasibility test, i.e., 1∈F , and solution 1

survives the comparisons from all other solutions in F . Then,

Pr{CS} ≥ Pr{1∈F and E(1, i), ∀ i∈F , i 6= 1}
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≥ Pr
{

1∈F and F̄ ∩F = ∅ and E(1, i), ∀ i∈F , i 6= 1
}

(11)

≥ Pr
{

1∈F and F̄ ∩F = ∅ and E(1, i), ∀ i∈ F, i 6= 1
}

(12)

≥ 1−Pr{1 6∈F}−Pr
{
∃ i∈ F̄ : i∈F

}
−Pr{∃ i∈ F, i 6= 1 : E(i,1)} (13)

≥ 1−Pr{1 6∈F}−
∑
i∈F̄

Pr{i∈F}−
∑

i∈F,i6=1

Pr{E(i,1)} (14)

≥ 1−α1− |F̄ |α1− (|F | − 1)α2. (15)

In the analysis above, the critical step is Inequality (11), where we add the additional requirement

F̄ ∩F = ∅. Then, the event inside of Pr{·} implies that

{1} ⊆F ⊆ F. (16)

Because F ⊆ F , we may enlarge F to F in Inequality (12). Inequalities (13) and (14) are the

consequences of direct applications of Bonferroni’s inequality, and Inequality (15) follows from

Theorem 1 and Kim and Nelson (2001) under the assumption that Inequalities (9) and (10) are

satisfied. Even though |F̄ | and |F | are unknown, we know that |F̄ |+ |F |= k. Therefore, it is natural

to choose α1 = α2 = α/k. Then, Pr{CS} ≥ 1−α. We summarize the statistical validity of Procedure

CCSB in the following Theorem.

Theorem 2. Suppose that Procedure CCSB is used to solve Problem (1), Equations (9) and

(10) are satisfied, and α1 = α2 = α/k for any 0<α< 1. Then, Pr{CS} ≥ 1−α.

As pointed out by Remark 2, all sample-feasible solutions have the same deterministic sample

size n0 at the end of the first stage. Therefore, we may use these samples to calculate the sample

variances S2
ij without creating any unnecessary dependence that affects the statistical validity

of Procedure KN . This is the major difference between Procedure CCSB and Procedure AK of

Andradóttir and Kim (2010) in terms of statistical validity.

Another difference between Procedures CCSB and AK is the error allocation scheme. Let

Fδγ = {i∈ {1,2, . . . , k} : Pr{Yi ≥ 0} ≥ 1− γ+ δγ} . (17)

Notice that Fδγ denotes the set of solutions that are clearly feasible (i.e., Pr{Yi ≥ 0} is at least δγ

larger than γ) and {1} ⊆ Fδγ . When applying their error-allocation strategy to our formulation,

Andradóttir and Kim (2010) and Batur and Kim (2010) essentially require

Fδγ ⊆F ⊆ F, (18)

which is a stronger requirement than ours (Equation 16) and thus leads to more conservative

allocations of the total error α.
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Figure 3 In this example, the x-axis is Pr{Yi ≥ 0} and y-axis is E(Xi). × represents infeasible solutions, +

represents feasible but not clearly feasible solutions, ∗ represents clearly feasible solutions, and ©

represents acceptable solutions.

In many practical situations, however, the indifference-zone assumptions, Equations (9) and (10),

may not be satisfied. To allow for those situations, we follow the convention of the indifference-zone

formulation and define the set of acceptable solutions. Without loss of generality, we now define

solution 1 as the best clearly feasible solution, i.e., E(X1) = maxi∈Fδγ E(Xi). Then, we define the

set of acceptable solutions as

A=
{
i= 1,2, . . . , k : E(Xi)>E(X1)− δ and Pr{Yi ≥ 0} ≥ 1− γ

}
,

and call an event a good selection (GS) if the selected solution is in the set A. In words, the

solutions in set A are feasible and within δ of the best clearly feasible solution. Figure 3 presents

an example to illustrate the set A. In this example, while solution 1 is the best clearly feasible

solution, solution 2 is the best feasible solution.

Corollary 1. Suppose that Procedure CCSB is used to solve Problem (1), solution 1 is the best

clearly feasible solution, and α1 = α2 = α/k for any 0<α< 1. Then, Pr{GS} ≥ 1−α.

Proof: The probability of a good selection can be bounded as follows,

Pr{GS} ≥ Pr{1∈F and E(1, i), ∀ i∈F\A}

≥ Pr
{

1∈F and F̄ ∩F = ∅ and E(1, i), ∀ i∈F\A
}

≥ Pr
{

1∈F and F̄ ∩F = ∅ and E(1, i), ∀ i∈ F\A
}

≥ 1−Pr{1 6∈F}−Pr
{
∃ i∈ F̄ : i∈F

}
−Pr{∃ i∈ F\A : E(i,1)} (19)

Following the arguments in Kim and Nelson (2001), {1} ⊂A, so |A| ≥ 1. Then,

Pr{∃ i∈ F\A : E(i,1)} ≤
∑
i∈F/A

Pr{E(i,1)}

≤ (|F | − |A|)α2 ≤ (|F | − 1)α2.
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Plugging into Inequality (19), we have

Pr{GS} ≥ 1−α1− |F̄ |α1− (|F | − 1)α2 = 1−α,

when α1 = α2 = α/k.

5. Multiple Secondary Performance Measures

The formulation (1) is for a single secondary performance measure. In many practical situations,

there will exist multiple secondary performance measures that the decision maker cares about.

Let Yi = (Y
(1)
i , . . . , Y

(m)
i )′ denote the vector of m secondary performance measures of solution i,

i= 1,2, . . . , k. When simulating solution i at the jth replication, we observe (Xij, Y
(1)
ij , . . . , Y

(m)
ij ),

i= 1,2, . . . , k and j = 1,2, . . ..

We consider two formulations to handle multiple secondary performance measures. In both

formulations, for any solution i, i = 1,2, . . . , k, we consider m constraints corresponding to m

secondary performance measures and treat {Y (s)
i ≥ 0} as the event of satisfying the sth constraint,

s = 1,2, . . . ,m. However, the two formulations differ in how the probabilities of these events are

considered.

5.1. Joint Chance Constraint

In the first formulation, the secondary performance measures are considered satisfactory if all

of them satisfy their corresponding constraints simultaneously, i.e., only the event {Y (1)
i ≥

0, . . . , Y
(m)
i ≥ 0} is considered satisfactory, and a solution is feasible if its probability of being satis-

factory is above a certain threshold. Therefore, we may formulate the CCSB problem with multiple

secondary performance measures as

max
i=1,2,...,k

E(Xi) s.t. Pr{Y (1)
i ≥ 0, . . . , Y

(m)
i ≥ 0} ≥ 1− γ. (20)

In the stochastic programming literature, Problem (20) is also known as a joint chance constrained

program.

Define

Yi = min{Y (1)
i , . . . , Y

(m)
i }. (21)

Then, the constraint in Problem (20) becomes

Pr{Yi ≥ 0} ≥ 1− γ,

which is the same as the constraint in Problem (1). Therefore, we convert a joint chance constraint

into a single chance constraint. Notice that this technique is also used by Hong et al. (2011).
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Procedure CCSB can be applied directly to Problem (20) to select the best feasible solution. We

can define Yi as in Equation (21) because our approach does not need a distributional assumption

on Yi.

An important benefit of formulation (20) is that we do not need to handle multiple constraints,

thus avoiding the extra conservativeness introduced by using Bonferroni’s inequality in error allo-

cation (see, for instance, Batur and Kim (2010) and also Section 5.2 below).

5.2. Multiple Individual Chance Constraints

In the alternative formulation, the secondary performance measures are considered satisfactory if

each of them satisfies a separate chance constraint, and a solution is feasible if all chance con-

straints are satisfied simultaneously. Therefore, we may formulate the CCSB problem with multiple

secondary performance measures as

max
i=1,2,...,k

E(Xi) s.t. Pr{Y (s)
i ≥ 0} ≥ 1− γs, s= 1,2, . . . ,m, (22)

and the tolerance level for each of the constraints is set as δγs > 0 for all s= 1,2, . . . ,m. Without

loss of generality, we denote solution 1 as the best feasible solution, and similar to Equations (9)

and (10), we assume that

E(X1) ≥ max
i∈{2,3,...,k}∩F

E(Xi) + δ, (23)

Pr{Y (s)
1 ≥ 0} ≥ 1− γs + δγs , s= 1,2, . . . ,m. (24)

Problem (22) has m constraints. So the Feasibility Test step of Procedure CCSB cannot be

applied directly, but the Selecting the Best step remains the same. We present the new feasibility

test in Section 5.2.1 and discuss error allocation in Section 5.2.2.

5.2.1. Feasibility Test Procedure Let Fs = {i∈ {1,2, . . . , k} : Pr{Y (s)
i ≥ 0} ≥ 1−γs} denote

the set of solutions that satisfy the sth constraint. Then it is clear that the set of feasible solutions

is F =
⋂m

s=1Fs. Therefore, we may check the feasibility of each constraint of each solution. If any

of the constraints appears to be violated, we claim the solution infeasible; otherwise, we claim it

feasible.

Let

m
(s)
β (n) = sup{m∈ {0,1, . . . , n} : F (m;n,γs)≤ β} ,

n∗s(β) = inf
{
n∈ {0,1, . . .} : F (m

(s)
β (n);n,γs− δγs)≥ 1−β

}
.

Let β1s denote the Type I and II errors allocated to the sth constraint, s = 1,2, . . . ,m. Notice

that, to test the sth constraint for solution i, we need n∗s(β1s) observations of Y
(s)
i . However,

Y
(1)
i , . . . , Y

(m)
i are observed simultaneously. Therefore, to test all constraints for solutions i, we need

n0 = max
s∈{1,2,...,m}

n∗s(β1s)
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observations of (Y
(1)
i , . . . , Y

(m)
i ). One way to choose β11, . . . , β1m is to have them satisfy that

n0 = n∗1(β11) = · · ·= n∗m(β1m). (25)

By doing so, we can ensure that the feasibility tests of all individual constraints finish at the same

sample size. Since we cannot start selection of the best until all constraint checking is complete,

there is no benefit to having unequal sample sizes unless doing so would permit us to make the

sample sizes for all constraints smaller; there is no reason to think we could achieve this. In

Section 5.2.2 we discuss how to determine β11, . . . , β1m to satisfy Equation (25).

We replace the Feasibility Test step of Procedure CCSB by the following procedure which

tests all m constraints simultaneously.

Procedure 4 (Feasibility Test For Multiple Chance Constraints)

Feasibility Test Let F denote the set of sample-feasible solutions and set F = ∅. Let i= 1,

Step 0 If i > k, where k is the number of solutions, terminate Feasibility Test; otherwise, let

τ = 0 and Zτ,s = 0.

Step 1 Let τ = τ + 1 and F old = F . Take an additional sample (Xiτ , Y
(1)
iτ , . . . , Y

(m)
iτ ) from solu-

tion i and let Zτ,s =Zτ−1,s + 1{Y (s)
iτ <0} for all s= 1,2, . . . ,m.

Step 2 If Zτ,s ≥m(s)
β1s

(n0)+1 for any s= 1,2, . . . ,m, declare solution i infeasible and go to Step

3; else if τ = ns, declare solution i feasible and let F = F old∪{i} and go to Step 3; otherwise, go

to Step 1.

Step 3 Let i= i+ 1 and go to Step 0.

5.2.2. Error Allocation Now we discuss how to choose β11, . . . , β1m and α2 so that the statis-

tical validity of Theorem 2 can be extended to the case of multiple chance constraints. By Inequality

(14), we have

Pr{CS} ≥ 1−Pr{1 6∈F}−
∑
i∈F̄

Pr{i∈F}−
∑

i∈F,i6=1

Pr{E(i,1)}. (26)

We analyze the three probability terms on the right-hand side of Inequality (26) one by one.

To analyze the first term, let Fs denote the set of solutions that are sample feasible for constraint

s, s= 1,2, . . . ,m. Notice that Fs, s= 1,2, . . . ,m, are not available to us at the end of the feasibility-

checking stage, because if a solution violates a constraint, the procedure stops and we do not know

whether it satisfies other constraints. Nevertheless, we can conceptually define the sets assuming

we use a fixed-sample-size feasibility test similar to Procedure 1, and it is clear that F ⊆Fs for

all s= 1,2, . . . ,m and
⋂m

s=1 Fs = F . Then,

Pr{1 6∈F}= Pr{1 6∈Fs, for some s= 1,2, . . . ,m} ≤
m∑
s=1

Pr{1 6∈Fs} ≤
m∑
s=1

β1s,
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where the last inequality follows from Theorem 1 if Equation (24) is satisfied.

To analyze the second term on the right-hand side of Inequality (26), we notice that∑
i∈F̄

Pr{i∈F} =
∑
i∈F̄

Pr{i∈Fs, for all s= 1,2, . . . ,m}

≤
∑
i∈F̄

Pr{i∈Fs, for all s= 1,2, . . . ,m such that i 6∈ Fs} (27)

≤
∑
i∈F̄

max
s∈{t: i 6∈Ft}

β1s ≤
∣∣F̄ ∣∣ max

s∈{1,2,...,m}
β1s,

where Inequality (27) holds because, if i ∈ F̄ , then there exists at least one s ∈ {1,2, . . . ,m} such

that i 6∈ Fs, i.e., an infeasible solution violates at least one of the m constraints.

The third term on the right-hand side of Inequality (26) is clearly upper bounded by (|F |−1)α2

by the property of Procedure KN . Let ᾱ1 = maxs=1,2,...,m β1s. Combining all three terms, we have

Pr{CS} ≥ 1−
m∑

s=1

β1s−
∣∣F̄∣∣ ᾱ1− (|F| − 1)α2.

To ensure that Pr{CS} ≥ 1−α, we let α2 = ᾱ1 and require that

m∑
s=1

β1s + (k− 1)ᾱ1 = α. (28)

To better understand the implications of Equation (28), we first consider a special case where

γ1 = · · ·= γm and δγ1 = · · ·= δγm . Then, by Equations (25) and (28), we have

ᾱ1 = β11 = · · ·= β1m =
α

m+ k− 1
.

Therefore, the error allocated to the feasibility test of each individual constraint and the error

allocated to the comparisons between each pair of solutions are α/(m+ k− 1), which we call an

additive rule because we divide the total error α by the addition of the number of constraints m

and the number of solutions k. Batur and Kim (2010) consider only the feasibility test (without

the selection of the best) and the error allocated to the feasibility test of each individual constraint

is α/(mk), which we call a multiplicative rule. The multiplicative rule is significantly more conser-

vative than the additive rule when m is not equal to one. The difference between the two rules is

because we use Equation (16) to define correct feasibility checking while Batur and Kim (2010) use

Equation (18). If one’s goal is to select the best feasible solution instead of identifying all feasible

solutions, then Equation (16) is sufficient.

Now we consider how to determine β11, . . . , β1m based on Equations (25) and (28) for more

general cases of γs and δγs , s= 1,2, . . . ,m. We use the normal approximation approach of Section

3.2. Let

as =
1

δγs

(√
(γs− δγs)(1− γs + δγs) +

√
γs(1− γs)

)
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for all s= 1,2, . . . ,m. To ensure Equation (25), we need

a1z1−β11 = · · ·= amz1−β1m = ξ

for some ξ > 0. Then, we have

β1s = Φ−1

(
− ξ

as

)
, s= 1,2, . . . ,m. (29)

Therefore, we only need to find ξ > 0 such that Equation (28) is satisfied.

Let ā= maxs∈{1,2,...,m} as. Then, by Equation (28) and (29), ξ satisfies

m∑
s=1

Φ−1

(
− ξ

as

)
+ (k− 1)Φ−1

(
− ξ
ā

)
= α. (30)

Notice that the left-hand side of Equation (30) is a decreasing function of ξ and α is in the range

of the function. Therefore, Equation (30) has a unique root ξ∗ > 0, which is

β1s = Φ−1

(
−ξ
∗

as

)
, s= 1,2, . . . ,m.

6. Numerical Examples

In this section, we use several numerical examples to examine the performance of the proposed

procedures in handling various CCSB problems.

6.1. Efficiency

We first illustrate the efficiency of Procedure CCSB proposed in Section 4.1 for a single-constraint

problem by different numerical examples. These examples have also been formulated as ECSB

problems to be solved by Procedures AK and AK+ in Andradóttir and Kim (2010). Section 6.1.1

describes the experimental configurations and Section 6.1.2 presents the main results, followed by

a comparison with both AK and AK+ in Section 6.1.3.

6.1.1. Configurations of Test Examples with A Single Constraint We consider only

one secondary performance measure for the set of test problems. Suppose that Xi ∼N(µi, σ
2
i ) and

Yi ∼N(νi,1) for all i = 1,2, . . . , k. We consider the following slippage configuration of means for

the primary performance measure:

µi =

 δ, i= 1,
0, i= 2,3, . . . , b,
iδ, i= b+ 1, b+ 2, . . . , k,

and various configurations of means for the secondary performance measure:

νi =

−Φ−1(γ− δγ), i= 1,
−Φ−1(γ− c1δγ), i= 2,3, . . . , b,
−Φ−1(γ+ c2δγ), i= b+ 1, b+ 2, . . . , k,

(31)
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Table 1 Optimal (mβ(n), n∗(β)) with a single constraint.

k= 5 k= 25 k= 101
mβ(n) 397 607 794
n∗(β) 4434 6776 8862

where b= b(1 + k)/2c, δ= 1
√

10 is the indifference-zone parameter, and Φ−1(·) denotes the inverse

of the standard normal distribution function. Setting c1 ≥ 1 and c2 ≥ 0 implies that solutions

1,2, . . . , b are feasible and the rest are infeasible. Notice that, in this slippage configuration of means

(where c1 = 1 and c2 = 0), we set µi = iδ for all infeasible solutions i= b+1, . . . , k to make infeasible

solutions particularly difficult to eliminate in the second stage if they are declared feasible.

Under the slippage configuration of means, we consider three variance configurations: all σ2
i = 102

in the equal-variance configuration, σ2
i = 102[1 + (i− 1)δ] in the increasing-variance configuration,

and σ2
i = 102/[1 + (i−1)δ] in the decreasing-variance configuration, respectively. For simplicity, we

assume that (Xi, Yi), i= 1,2, . . . , k, are mutually independent and Xi is also independent of Yi for

all i= 1,2, . . . , k.

Other parameters are specified as follows. Let the upper bound of the violation probability be

γ = 0.1 and the tolerance level be δγ = 0.02. Let the total error allowance be α= 0.05 and the Type

I and II errors defined in Equations (3) and (4) are chosen as α1 = α2 = α/k. We set the number of

solutions as k= 5,25,101. Using Equations (5) and (6), we compute the optimal mβ(n) and n∗(β)

shown in Table 1 where β = α1 throughout this section.

6.1.2. Main Results for CCSB Formulation with A Single Constraint In Table 2,

we report very detailed results for all solutions for the case where k = 5, including the average

first-stage sample size (FSS), the observed feasibility probability (FP) and surviving probability2

(SP) at the end of the first stage, the average total sample size (TSS), and the probability of the

selection (PS) for each solution, over 1000 independent macroreplications. In addition, the average

total sample sizes for all solutions by the end of the first and second stages are reported in the last

column of the table.

We have several findings from the results in Table 2. First, the sequential feasibility test can

save about 4.1% of sampling effort even in the slippage configuration, where 4.1% is calculated

by (1−Total of FSS/(kn0)) × 100%. Second, because feasibility checking in the first stage may

require a significant amount of computational effort, it makes sense to use the first-stage samples

for elimination rather than abandoning them, as in the Restarting Procedure in Andradóttir and

Kim (2010). In fact, based on the information from the first-stage samples, there is a significant

chance to make an elimination decision for feasible but inferior solutions (solutions 2 and 3 in this

2 Surviving probability of solution i denotes the probability that solution i has not been eliminated by KN procedure
with just the first-stage n0 samples.
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Table 2 Summary of single-constraint CCSB formulation when k= 5.

Solution 1 2 3 4 5 Total

Equal Variance
FSS 4.43× 103 4.43× 103 4.43× 103 3.98× 103 3.98× 103 2.13× 104

FP 0.992 0.992 0.988 0.015 0.008 –
SP 0.969 0.666 0.627 0.015 0.008 –

TSS 6.09× 103 5.58× 103 5.53× 103 3.98× 103 3.97× 103 2.52× 104

PS 0.950 0.013 0.014 0.015 0.008 –

Increasing Variance
FSS 4.43× 103 4.43× 103 4.43× 103 3.97× 103 3.98× 103 2.13× 104

FP 0.985 0.989 0.989 0.011 0.009 –
SP 0.964 0.729 0.815 0.011 0.009 –

TSS 7.39× 103 6.29× 103 6.91× 103 3.97× 103 3.97× 103 2.90× 104

PS 0.948 0.020 0.012 0.011 0.009 –

Decreasing Variance
FSS 4.43× 103 4.43× 103 4.43× 103 3.97× 103 3.98× 103 2.13× 104

FP 0.995 0.985 0.988 0.008 0.011 –
SP 0.973 0.523 0.443 0.008 0.011 –

TSS 5.53× 103 5.25× 103 4.98× 103 3.97× 103 3.98× 103 2.37× 104

PS 0.956 0.015 0.010 0.008 0.011 –

case) according to the difference between FP and SP. Third, in the configuration that we consider,

it is often difficult to eliminate an infeasible solution once it passes the feasibility test since it has a

larger primary performance measure than all feasible ones. Fourth, it is often harder/easier to select

the best for the increasing-variance/decreasing-variance configuration than for the equal-variance

configuration, which is consistent with the intuition that it is often difficult to eliminate inferior

solutions with large variances.

Due to the space limitation, we summarize the numerical results with similar conclusions for

k = 25 and k = 101 in Table 11 in Appendix A.1. In the following section, we investigate the

efficiency of Procedure CCSB compared with two existing procedures, AK and AK+.

6.1.3. Comparisons with Procedures AK and AK+ Since CCSB problems can be for-

mulated as ECSB problems, we also applied two competitors to Procedure CCSB, a two-stage

procedure, AK, and a simultaneously running procedure, AK+, from Andradóttir and Kim (2010).

To make a fair comparison, we set α1 = α2 = α/2 = 0.025 for AK and α = 0.05 for AK+, q =

γ− δγ/2 = 0.09 and ε= δγ/2 = 0.01, and the initial-stage sample size n0 = 20. All other parameters

are the same as in Section 6.1.1. We only report detailed results for k= 5 with equal-variance con-

figuration in Table 3. The numerical results for k= 25 and k= 101 are presented in Appendix A.1.

Notice that AK+ is a simultaneously running procedure which performs both feasibility checking

and optimality checking at the same time, so it is not clear how to define a proper first stage for

AK+. In this paper, we only report the estimates (i.e., TSS and PS) when Procedure AK+ is

completed.
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Table 3 Summary of single-constraint ECSB formulation using AK and AK+ when k= 5.

Solution 1 2 3 4 5 Total

Procedure AK, without Batching
FSS 2.83× 103 2.88× 103 2.83× 103 3.50× 103 3.54× 103 1.56× 104

FP 0.999 0.995 0.996 0.128 0.129 –
SP 0.998 0.977 0.985 0.128 0.129 –

TSS 7.22× 103 6.07× 103 6.23× 103 4.00× 103 3.96× 103 2.75× 104

PS 0.746 0.004 0.006 0.116 0.128 –

Procedure AK, with Batching, Batch Size = 10
FSS 2.96× 103 2.83× 103 2.87× 103 3.51× 103 3.60× 103 1.58× 104

FP 0.997 0.997 0.993 0.009 0.010 –
SP 0.996 0.972 0.973 0.009 0.010 –

TSS 8.22× 103 6.77× 103 6.89× 103 3.53× 103 3.61× 103 2.90× 104

PS 0.963 0.012 0.006 0.009 0.010 –

Procedure AK+, with Batching, Batch Size = 10
TSS 7.53× 103 6.42× 103 6.21× 103 2.84× 103 2.92× 103 2.59× 104

PS 0.946 0.014 0.011 0.012 0.017 –

From Table 3, we find that, without batching, Procedure AK (and also AK+, whose results

have been omitted here) may not be able to deliver the desired PCS (i.e., PS of Solution 1)

when constraints involve probabilities. Even though the probabilistic constraints can be written as

expectations of Bernoulli random variables, the normality assumption for Procedure AK and AK+

fails. This has been observed in Section 6.3 of Andradóttir and Kim (2010), and they suggest using

batching to overcome this problem. We also report results for both AK and AK+ when batching

is used with a batch size of 10 replications. With batching, the desired PCS is nearly achieved by

both procedures, which is consistent with the conclusion in Section 6.3 of Andradóttir and Kim

(2010). It is interesting to point out that, from the results in Table 12 in Appendix A.1, Procedure

AK achieves the desired PCS while AK+ slightly fails, which implies the importance of selecting

a proper batch size.

Comparing the other results for the equal-variance case with Table 2, we have additional obser-

vations: The total number of samples required for feasibility checking by Procedure AK is less

than that of Procedure CCSB (approximately 27%), but the total number of replications needed

to select the best for Procedure AK (and AK+) is slightly more than that for Procedure CCSB

(approximately 9% for AK and 3% for AK+). Even though CCSB requires more samples for feasi-

bility checking, these samples provide an accurate estimation of the sample variance of the primary

performance measures (recall that CCSB uses n0 = n∗(α/k) while AK and AK+ use n0 = 20 to

estimate the sample variances), and they are still used at the second stage for selection of the best.

It is also interesting to notice that Procedure AK allocates more replications to infeasible solutions

(i.e., solutions 4 and 5) and requires more replications to select the best from surviving solutions.
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The slippage configuration of means for the secondary performance measure (i.e., setting c1 = 1

and c2 = 0 in Equation (31)) indicates that the feasibility checking is difficult in general. However,

in the non-slippage configuration, the probabilistic condition pi may be far away from the violation

probability bound γ. Therefore, we should expect AK to require fewer samples to complete feasibil-

ity checking as it estimates the sample variance of the secondary performance measure. However,

as demonstrated by numerical examples in Appendix A.3, we find that this benefit is usually offset

by the inefficiency of AK for selection of the best due to its poor estimation of sample variance

of the primary performance measure, unless the configuration is such that optimality checking is

much easier than feasibility checking.

6.2. Examples with Multiple Secondary Performance Measures

We next consider the situation where there are multiple secondary performance measures in CCSB

problems, which may be formulated as a joint chance-constrained problem or a multiple individual

chance-constrained problem.

6.2.1. Configurations of Test Examples with Multiple Constraints and Main

Results For convenience, we assume that Y
(s)
i ∼ N(ν

(s)
i ,1) are mutually independent and also

independent of Xi, for s = 1,2, . . . ,m and i = 1,2, . . . , k. For the joint constraint formulation in

Equation (20), we set

ν
(s)
i =

−Φ−1
(

1− (1− γ+ δγ)
1
m

)
, i= 1,2, . . . , b,

−Φ−1
(

1− (1− γ)
1
m

)
, i= b+ 1, b+ 2, . . . , k,

for all s= 1,2, . . . ,m. For the multiple constraints formulation in Equation (22), we set γs = γ = 0.1,

δγs = δγ = 0.02 and

ν
(s)
i =


−Φ−1 (γ− δγ) , i= 1,2, . . . , b and s= 1,2, . . . ,m,
−Φ−1 (γ− δγ) , i= b+ 1, b+ 2, . . . , b b+k

2
c and s= 1,2, . . . ,m− 1,

−Φ−1 (γ) , i= b+ 1, b+ 2, . . . , b b+k
2
c and s=m,

−Φ−1 (γ) , i= b b+k
2
c+ 1, b b+k

2
c+ 2, . . . , k and s= 1,2, . . . ,m.

Under this setting, solutions 1,2, . . . , b are feasible, solutions b+1, b+2, . . . , b b+k
2
c violate only one

constraint, and solutions b b+k
2
c+1, b b+k

2
c+2, . . . , k violate all constraints. For both formulations, we

let m= 5, and all other parameter settings are the same as the problems reported in Section 6.1.1.

For the joint constraint formulation, the optimal (mβ(n), n∗(β)) is the same as in Table 1. For

the multiple constraints formulation, we choose α1 = α2 = α/(m+ k− 1) and provide the optimal

mβ(n) and n∗(β) in Table 4.

Table 4 Optimal (mβ(n), n∗(β)) with multiple constraints.

k= 5 k= 25 k= 101
mβ(n) 472 626 799
n∗(β) 5271 6989 8918
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Table 5 Summary of joint-constraint formulation when k= 5.

Solution 1 2 3 4 5 Total

Equal Variance
FSS 4.43× 103 4.43× 103 4.43× 103 3.98× 103 3.99× 103 2.13× 104

FP 0.991 0.991 0.986 0.006 0.009 –
SP 0.975 0.635 0.625 0.006 0.009 –

TSS 6.11× 103 5.56× 103 5.56× 103 3.98× 103 3.99× 103 2.52× 104

PS 0.961 0.010 0.014 0.006 0.009 –

Increasing Variance
FSS 4.43× 103 4.43× 103 4.43× 103 3.98× 103 3.98× 103 2.13× 104

FP 0.991 0.990 0.995 0.012 0.004 –
SP 0.977 0.759 0.848 0.012 0.004 –

TSS 7.57× 103 6.30× 103 7.12× 103 3.98× 103 3.98× 103 2.90× 104

PS 0.954 0.015 0.015 0.012 0.004 –

Decreasing Variance
FSS 4.43× 103 4.43× 103 4.43× 103 3.98× 103 3.98× 103 2.13× 104

FP 0.988 0.992 0.982 0.008 0.009 –
SP 0.969 0.517 0.413 0.008 0.009 –

TSS 5.41× 103 5.18× 103 4.90× 103 3.97× 103 3.97× 103 2.34× 104

PS 0.954 0.011 0.018 0.008 0.009 –

Table 6 Summary of multiple-constraint formulation when k= 5.

Solution 1 2 3 4 5 Total

Equal Variance
FSS 5.27× 103 5.27× 103 5.27× 103 4.73× 103 4.49× 103 2.50× 104

FP 0.970 0.972 0.971 0.008 0.000 –
SP 0.961 0.620 0.594 0.008 0.000 –

TSS 7.00× 103 6.51× 103 6.50× 103 4.72× 103 4.48× 103 2.92× 104

PS 0.953 0.017 0.022 0.008 0.000 –

Increasing Variance
FSS 5.27× 103 5.27× 103 5.27× 103 4.72× 103 4.49× 103 2.50× 104

FP 0.976 0.965 0.985 0.003 0.000 –
SP 0.973 0.753 0.838 0.003 0.000 –

TSS 8.58× 103 7.40× 103 8.09× 103 4.72× 103 4.49× 103 3.33× 104

PS 0.963 0.019 0.015 0.003 0.000 –

Decreasing Variance
FSS 5.27× 103 5.27× 103 5.27× 103 4.74× 103 4.49× 103 2.50× 104

FP 0.980 0.986 0.964 0.005 0.000 –
SP 0.976 0.473 0.392 0.005 0.000 –

TSS 6.28× 103 6.03× 103 5.85× 103 4.74× 103 4.49× 103 2.74× 104

PS 0.968 0.010 0.01 0.005 0.000 –

The results for the joint constraint and multiple constraints formulations when k= 5 are reported

in Tables 5 and 6, respectively. From Tables 5 and 6, we can draw similar conclusions as from

Table 2. The procedures deliver the required probability of correct selection and the sequential

feasibility test delivers a positive benefit at no cost: about 4.1% and 5.0% of savings for the

joint constraint and multiple constraints formulations, respectively. We report the results of both
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Table 7 Summary of multiple-constraint ECSB formulation using FIB and FIA when k= 5.

Solution 1 2 3 4 5 Total

Procedure FIB , with Batching, Batch Size = 10
FSS 7.00× 103 6.97× 103 6.92× 103 5.27× 103 3.00× 103 2.92× 104

FP 0.997 0.993 0.995 0.001 0.000 –
SP 0.995 0.649 0.654 0.001 0.000 –

TSS 9.21× 103 8.48× 103 8.36× 103 5.27× 103 3.00× 103 3.43× 104

PS 0.986 0.007 0.006 0.001 0.000 –

Procedure FIA, with Batching, Batch Size = 10
FSS 7.30× 103 7.24× 103 7.24× 103 5.43× 103 1.14× 103 2.83× 104

FP 0.998 0.997 0.996 0.000 0.000 –
SP 0.997 0.536 0.555 0.000 0.000 –

TSS 8.67× 103 8.11× 103 8.22× 103 5.43× 103 1.14× 103 3.16× 104

PS 0.983 0.009 0.008 0.000 0.000 –

formulations for the cases where k = 25 and k = 101 in Table 13 in Appendix A.2, from which we

find that the conclusions hold for these cases.

6.2.2. Comparison with Procedures FIB and FIA To deal with problems having multiple

secondary performance measures (i.e., the formulation in Equation (22)), we compare against

Procedure AK with feasibility-checking being replaced by either Procedures FIB or FIA in Batur and

Kim (2010) (for simplicity, we call Procedures AK+FIB and AK+FIA as FIB and FIA, respectively,

in this paper).

We now consider the example in Section 6.2.1 with m = 5 multiple secondary performance

measures. We set α1 = α2 = α/2 = 0.025, qs = q = γ − δγ/2 = 0.09 and εs = ε= δγ/2 = 0.01 for s=

1,2, . . . ,m, and the initial-stage sample size n0 = 20. Since all solutions are simulated independently,

we let β =
(
1−(1−α1)1/k

)
/m in Procedure FIB and γ be the solution to (1−γ)k+(1−mγ)k = 2−α1

in Procedure FIA (note that here β and γ are the notations used in describing the procedures in

Batur and Kim (2010)). All other parameters are set the same as in Section 6.2.1. To make FIB and

FIA yield the desired PCS, we only used batched output data with batch size equal to 10. Table 7

reports the detailed results for the case where k= 5 under the equal-variance configuration.

Comparing these results to Table 6, we have the following findings: First, Procedures FIB and

FIA tend to be more conservative in terms of PCS than Procedure CCSB. This is because the

“multiplicative rule” in FIB and FIA makes the feasibility checking more conservative than the

“additive rule” in Procedure CCSB. Second, Procedure FIA is more efficient than FIB , which is

consistent with the conclusion in Batur and Kim (2010). Third, the total number of samples needed

both for feasibility checking and selection of the best by FIB and FIA are more than those needed

by Procedure CCSB (approximately 17% for FIB and 8% for FIA).
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Table 8 Summary of CCSB formulation when k= 5 with multiple acceptable solutions.

Solution 1 2 3 4 5 Total

Equal Variance
FSS 4.34× 103 4.43× 103 4.43× 103 3.98× 103 3.98× 103 2.12× 104

FP 0.466 0.993 0.992 0.010 0.008 –
SP 0.456 0.813 0.397 0.010 0.008 –

TSS 4.80× 103 5.54× 103 5.09× 103 3.96× 103 3.95× 103 2.33× 104

PS 0.449 0.526 0.007 0.010 0.008 0.975

Increasing Variance
FSS 4.34× 103 4.43× 103 4.43× 103 3.98× 103 3.98× 103 2.12× 104

FP 0.467 0.990 0.993 0.004 0.009 –
SP 0.459 0.820 0.388 0.004 0.009 –

TSS 4.86× 103 5.55× 103 5.05× 103 3.95× 103 3.95× 103 2.34× 104

PS 0.456 0.524 0.007 0.004 0.009 0.980

Decreasing Variance
FSS 4.34× 103 4.43× 103 4.43× 103 3.98× 103 3.98× 103 2.12× 104

FP 0.440 0.989 0.988 0.005 0.012 –
SP 0.436 0.812 0.412 0.005 0.012 –

TSS 4.83× 103 5.57× 103 5.06× 103 3.92× 103 3.92× 103 2.33× 104

PS 0.431 0.542 0.010 0.005 0.012 0.973

6.3. An Example where the Best Solution Is Not Clearly Feasible

As mentioned in Section 3, our feasibility test does not have an explicit control of its power when

the solution is feasible but not clearly feasible. In this subsection, we consider an example where

the best feasible solution is not clearly feasible. Specifically, we consider the example for a single-

constraint CCSB formulation and set the parameters the same as in Section 6.1.1 except that

µi =


2δ, i= 1,
δ, i= 2,
0, i= 3,4, . . . , b,
iδ, i= b+ 1, b+ 2, . . . , k,

and

νi =

−Φ−1(γ− 0.5δγ), i= 1,
−Φ−1(γ− δγ), i= 2,3, . . . , b,
−Φ−1(γ), i= b+ 1, b+ 2, . . . , k.

In this example, solution 1 is the best feasible solution but is not clearly feasible, solution 2 is the

best solution among all clearly feasible solutions, and both are acceptable. We report the results

for the case where k= 5 in Table 8, where PS in the last column represents the probability of good

selection (PGS, i.e., the probability of selecting either solution 1 or 2). In contrast to the results

in Table 2, our procedure declares solution 1 infeasible with a probability that is larger than α2

(which is illustrated as point A in Figure 1). However, the procedure selects an acceptable solution

with a probability that is at least 1−α.
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6.4. The Newsvendor Problem

The last example tested in this paper is a multiple-product newsvendor problem with correlated

log-normal demands subject to some service level constraints. Suppose that there are three prod-

ucts with random demand D= (D1,D2,D3)T , where log(D)∼N(µ,Σ). The order quantity of the

products is x= (x1, x2, x3)T ∈ Z3
+. Let csi and coi denote the per unit shortage and overage costs

for product i, i= 1,2,3. Then the expected total cost can be written as

π(x) = E

{
3∑
i=1

[
csi(Di−xi)+ + coi(xi−Di)

+
]}

,

where y+ = max{y,0}. By Equations (20) and (22), we can formulate this problem as

maxx −π(x) =−
∑3

i=1 [csiE(Di−xi)+ + coiE(xi−Di)
+]

s.t. Pr{Di ≤ xi, i= 1,2,3} ≥ 1− γ, (32)

as a joint CCSB problem, and

maxx −π(x) =−
∑3

i=1 [csiE(Di−xi)+ + coiE(xi−Di)
+]

s.t. Pr{Di ≤ xi} ≥ 1− γ, for i= 1,2,3,
(33)

as a multi-constraint CCSB problem.

Let µ= (2.0,2.5,3.0)T and

Σ =

σ1 0 0
0 σ2 0
0 0 σ3

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

σ1 0 0
0 σ2 0
0 0 σ3

 ,
where (σ1, σ2, σ3) = (1.0,1.1,1.2), and csi = 3 and coi = 1 for i= 1,2,3. Suppose the order quantities

for products 1,2,3 take values from the following sets: x1 ∈ {15,30,50,55}, x2 ∈ {25,75,95,100}

and x3 ∈ {45,115,180,210} under the joint constraint formulation while x1 ∈ {15,25,30,40}, x2 ∈

{25,55,60,75} and x3 ∈ {45,90,110,145} under the multiple constraints formulation. Then there

are k= 64 solutions for each formulation.

We set the violation probability γ = 0.1, the tolerance level δγ = 0.02, indifference-zone parameter

δ= 1, and total error allowance α= 0.05. The optimal mβ(n) and n∗(β) are shown in Table 9.

Given the values of parameters and distribution of D, we can compute exact values of the objec-

tive functions and probability constraints in Formulations (32) and (33). For the joint constraint

formulation, there are 12 feasible solutions, 8 of which are clearly feasible, and the best feasible

solution is xb1 = (50,75,180) with the expected cost 263.0 and the benchmark solution (i.e., the

Table 9 Optimal (mβ(n), n∗(β)) for the newsvendor problem.

Joint Constraint Multiple Constraints
α1 = α2 α/k α/(k+m− 1)
mβ(n) 732 737
n∗(β) 8171 8226
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Table 10 Summary for the newsvendor problem.

Configurations Joint Constraint Multiple Constraints

FSAS 2.81× 105 3.09× 105

Saving% 46.7% 41.3%
TSAS 3.88× 105 6.58× 105

PGS 0.999 0.999

best among all clearly feasible solutions) is xg1 = (50,95,180) with the expected cost 279.9. For

the multiple constraints case, there are 12 feasible solutions, 4 of which are clearly feasible, and

the best feasible solution is xb2 = (30,55,110) with the expected cost 176.6 and the benchmark

solution is xg2 = (40,60,110) with the expected cost 187.6. In both formulations, there are multiple

acceptable solutions. In Tables 18 and 19 in Appendix B, we list the information for all solutions

for both formulations.

In Table 10, we report the average first-stage sample size (FSS), the percentage of savings by

using a sequential feasibility test (Saving%), the average total sample size (TSS) and the PGS, over

1000 independent macroreplications. From the results we conclude that the procedures we propose

can correctly select an acceptable solution. Furthermore, as the example is not in the slippage

configuration, the sequential feasibility test demonstrates a substantial amount of savings (over

40% in both formulations) compared to the fixed-sample test.

7. Conclusions

In this paper we study CCSB problems where we select the best solution with the maximum or

minimum expected value of the primary performance measure under the requirement that the

secondary performance measures satisfy certain probabilistic constraints. We propose various two-

stage procedures for CCSB problems. Specifically, in the first stage of the procedures, we design

a fixed-sample feasibility test and a sequential feasibility test by transforming the probabilistic

constraints to hypothesis tests on Bernoulli random variables. These tests not only select feasible

solutions with the required Type I and Type II errors, but also allow us to use the first-stage

samples for selection in the second stage. In the second stage of the procedures, we use the KN

procedure to sequentially select the best solution from the sample-feasible solutions. We prove that

the our procedures can deliver the required PCS under the indifference-zone framework. To han-

dle CCSB problems with multiple secondary performance measures we propose two formulations:

joint constraint formulation and multiple constraints formulation. We design two-stage procedures

for both formulations and prove their statistical validities under the indifference-zone framework.

We test our procedures using a number of examples and the procedures can deliver the desired

performances.
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Appendix A: Additional Numerical Experiments

A.1. Numerical Examples with A Single Constraint

We consider the test examples in Section 6.1 when the number of solutions is k = 25 and k = 101. For

simplicity of presentation, we only report the following information in Table 11: the average of total first-stage

sample size (FSS), the percentage of savings achieved by using the sequential test (Saving %), the observed

feasibility probability for solution 1 (FP), the average of the total sample size for all solutions (TSS), and

the probability of correct selection (PCS, i.e., probability of selecting solution 1), over 1000 independent

macroreplications. The same conclusions can be drawn as for the case where k= 5.

Table 11 Summary of single-constraint CCSB formulation when k= 25 and k= 101.

k= 25 k= 101
Configurations Equal Increasing Decreasing Equal Increasing Decreasing

FSS 1.61× 105 1.61× 105 1.61× 105 8.50× 105 8.49× 105 8.49× 105

Saving% 4.9% 5.0% 4.9% 5.1% 5.1% 5.1%
FP 0.998 0.998 1.000 0.999 1.000 1.000
TSS 1.78× 105 2.78× 105 1.64× 105 9.11× 105 2.81× 106 8.52× 105

PCS 0.956 0.947 0.967 0.966 0.952 0.967

Table 12 is a summary of the results using Procedures AK and AK+ for the equal-variance case where

k = 25 and k = 101 with batch size equal to 10, from which we draw similar conclusions as for k = 5. Even

though AK+ tends to be more efficient than AK (and CCSB) in this example, which is consistent with

the findings (note that a simultaneously running procedure, AK+, is often more aggressive than a two-

stage procedure, AK) in Andradóttir and Kim (2010), AK+ fails to deliver the desired PCS. This could be

explained by the lack of normality even using batching.

Table 12 Summary of single-constraint ECSB formulation using AK and AK+ when k= 25 and k= 101.

Procedure AK Procedure AK+
Configurations k= 25 k= 101 k= 25 k= 101

FSS 1.20× 105 6.44× 105 – –
FP 0.998 1.000 – –
TSS 1.92× 105 9.49× 105 1.76× 105 8.79× 105

PCS 0.969 0.960 0.945 0.937

A.2. Numerical Examples with Multiple Constraints

We consider examples with multiple constraints in Section 6.2 when the number of solutions is k = 25 and

k= 101. Table 13 reports the numerical results with similar findings as for the case k= 5 in Section 6.2.

Table 14 summarizes results for FIB and FIA for the equal-variance case where k = 25 and k = 101 with

batch size equal to 10, from which we can draw the same conclusions as for k= 5.



Hong, Luo, and Nelson: Chance Constrained Selection of the Best
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2013-01-OA-011 33

Table 13 Summary of both joint-constraint and multiple-constraint formulations when k= 25 and k= 101.

k= 25 k= 101
Configurations Equal Increasing Decreasing Equal Increasing Decreasing

Joint Constraint
FSS 1.61× 105 1.61× 105 1.61× 105 8.49× 105 8.49× 105 8.49× 105

Saving% 4.9% 4.9% 5.0% 5.1% 5.1% 5.1%
FP 0.998 0.997 0.997 0.997 1.000 1.000
TSS 1.78× 105 2.79× 105 1.64× 105 9.10× 105 2.82× 106 8.51× 105

PCS 0.957 0.960 0.964 0.955 0.956 0.973

Multiple Constraints
FSS 1.64× 105 1.64× 105 1.64× 105 8.47× 105 8.47× 105 8.47× 105

Saving% 5.9% 5.9% 5.9% 6.0% 6.0% 6.0%
FP 0.987 0.990 0.995 0.997 0.998 0.997
TSS 1.83× 105 2.86× 105 1.67× 105 9.10× 105 2.84× 106 8.49× 105

PCS 0.963 0.962 0.982 0.967 0.954 0.982

Table 14 Summary of multiple-constraint ECSB formulation using FIB and FIA when k= 25 and k= 101.

Procedure FIB Procedure FIA
Configurations k= 25 k= 101 k= 25 k= 101

FSS 1.92× 105 9.82× 105 1.81× 105 9.16× 105

FP 0.998 1.000 1.000 0.999
TSS 2.22× 105 11.05× 105 2.07× 105 10.30× 105

PCS 0.981 0.982 0.984 0.985

A.3. Comparisons in Non-Slippage Configuration

Besides the slippage configuration of means considered in Section 6.1, we also consider three cases where the

probabilistic constraints of inferior solutions or infeasible solutions are not on the boundary. Specifically, we

set

νi =

−Φ−1(γ− δγ), i= 1,
−Φ−1(γ− 4δγ), i= 2,3, . . . , b,
−Φ−1(γ+ 4δγ), i= b+ 1, b+ 2, . . . , k,

in the first case, and

νi =

−Φ−1(γ− δγ), i= 1,
−Φ−1(γ− 4δγ), i= 2,3, . . . , b,
−Φ−1(γ+ δγ), i= b+ 1, b+ 2, . . . , k,

in the second case, and

νi =

{
−Φ−1(γ− δγ), i= 1,2, . . . , b,
−Φ−1(γ+ 4δγ), i= b+ 1, b+ 2, . . . , k,

in the third case.

All other parameters are the same as in Section 6.1.1. For brevity, we report only the detailed results for

different procedures when the number of solutions is k= 5 in Tables 15–17.

From Tables 15–17, we have the following findings. First, Procedure AK has a significant advantage for

determining feasibility when the constraint is not on the boundary while the savings by Procedure CCSB

appears not so significant. Second, the dramatic savings in the first stage vanishes at the end of the second
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Table 15 Summary of single-constraint problem (first case) using different procedures when k= 5.

Solution 1 2 3 4 5 Total

Procedure AK With Batching, Batch Size = 10
FSS 2.95× 103 0.229× 103 0.300× 103 0.932× 103 0.923× 103 4.27× 103

FP 0.997 1.000 1.000 0.000 0.000 –
TSS 7.23× 103 5.82× 103 5.81× 103 0.932× 103 0.923× 103 2.07× 104

PS 0.977 0.013 0.010 0.000 0.000 –

Procedure AK+ With Batching, Batch Size = 10
TSS 7.66× 103 6.43× 103 6.42× 103 0.763× 103 0.762× 103 2.20× 104

PS 0.979 0.011 0.010 0.000 0.000 –

Procedure CCSB
FSS 4.433× 103 4.434× 103 4.434× 103 2.221× 103 2.209× 103 1.77× 104

FP 0.991 1.000 1.000 0.000 0.000 –
TSS 6.22× 103 5.66× 103 5.64× 103 2.22× 103 2.21× 103 2.19× 104

PS 0.968 0.014 0.018 0.000 0.000 –

Table 16 Summary of single-constraint problem (second case) using different procedures when k= 5.

Solution 1 2 3 4 5 Total

Procedure AK With Batching, Batch Size = 10
FSS 2.88× 103 0.232× 103 0.228× 103 3.59× 103 3.60× 103 1.05× 104

FP 0.999 1.000 1.000 0.006 0.010 –
TSS 7.24× 103 5.90× 103 5.87× 103 3.60× 103 3.61× 103 2.62× 104

PS 0.959 0.010 0.016 0.005 0.010 –

Procedure AK+ With Batching, Batch Size = 10
TSS 7.64× 103 6.43× 103 6.35× 103 2.89× 103 2.89× 103 2.62× 104

PS 0.943 0.014 0.015 0.012 0.016 –

Procedure CCSB
FSS 4.433× 103 4.434× 103 4.434× 103 3.977× 103 3.982× 103 2.13× 104

FP 0.990 1.000 1.000 0.011 0.009 –
TSS 6.11× 103 5.63× 103 5.53× 103 3.98× 103 3.98× 103 2.52× 104

PS 0.952 0.006 0.022 0.011 0.009 –

Table 17 Summary of single-constraint problem (third case) using different procedures when k= 5.

Solution 1 2 3 4 5 Total

Procedure AK With Batching, Batch Size = 10
FSS 3.00× 103 2.92× 103 2.88× 103 0.926× 103 0.938× 103 1.07× 104

FP 0.997 0.996 0.994 0.000 0.000 –
TSS 7.29× 103 6.17× 103 6.13× 103 0.926× 103 0.938× 103 2.15× 104

PS 0.983 0.008 0.009 0.000 0.000 –

Procedure AK+ With Batching, Batch Size = 10
TSS 7.55× 103 6.38× 103 6.35× 103 0.756× 103 0.750× 103 2.18× 104

PS 0.969 0.018 0.013 0.000 0.000 –

Procedure CCSB
FSS 4.434× 103 4.433× 103 4.433× 103 2.208× 103 2.212× 103 1.77× 104

FP 0.991 0.989 0.989 0.000 0.000 –
TSS 6.15× 103 5.65× 103 5.60× 103 2.208× 103 2.212× 103 2.18× 104

PS 0.971 0.016 0.013 0.000 0.000 –
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stage. Third, as two-stage procedures, Procedure AK is more conservative in PCS (i.e., PS for solution 1)

than Procedure CCSB; while the simultaneously running procedure, AK+ may fail to give a desired PCS in

some cases.



Hong, Luo, and Nelson: Chance Constrained Selection of the Best
36 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2013-01-OA-011

Appendix B: Solutions of the Newsvendor Problem

Table 18 Solutions for joint-constraint formulation of the newsvendor problem.

solution p Cost Status System p Cost Status
(15,25,45) 0.539 129.7 IF (15,25,115) 0.608 161.6 IF
(15,25,180) 0.618 213.6 IF (15,25,210) 0.619 240.1 IF
(15,75,45) 0.618 156.6 IF (15,75,115) 0.718 188.4 IF
(15,75,180) 0.734 240.4 IF (15,75,210) 0.737 266.9 IF
(15,95,45) 0.622 173.5 IF (15,95,115) 0.724 205.3 IF
(15,95,180) 0.741 257.3 IF (15,95,210) 0.744 283.8 IF
(15,100,45) 0.623 177.9 IF (15,100,115) 0.725 209.7 IF
(15,100,180) 0.742 261.7 IF (15,100,210) 0.745 288.2 IF
(30,25,45) 0.599 136.3 IF (30,25,115) 0.690 168.1 IF
(30,25,180) 0.705 220.1 IF (30,25,210) 0.707 246.6 IF
(30,75,45) 0.705 163.1 IF (30,75,115) 0.844 194.9 IF
(30,75,180) 0.870 246.9 IF (30,75,210) 0.875 273.4 IF
(30,95,45) 0.711 180.0 IF (30,95,115) 0.855 211.8 IF
(30,95,180) 0.882 263.8 IF (30,95,210) 0.887 290.3 IF
(30,100,45) 0.712 184.4 IF (30,100,115) 0.856 216.2 IF
(30,100,180) 0.884 268.2 IF (30,100,210) 0.889 294.7 IF
(50,25,45) 0.612 152.4 IF (50,25,115) 0.710 184.2 IF
(50,25,180) 0.726 236.2 IF (50,25,210) 0.729 262.7 IF
(50,75,45) 0.725 179.2 IF (50,75,115) 0.879 211.0 IF
(50,75,180) 0.909 263.0 Best (50,75,210) 0.915 289.5 F
(50,95,45) 0.732 196.1 IF (50,95,115) 0.892 227.9 IF
(50,95,180) 0.924 279.9 Benchmark (50,95,210) 0.930 306.4 CF
(50,100,45) 0.734 200.5 IF (50,100,115) 0.894 232.3 IF
(50,100,180) 0.926 284.3 CF (50,100,210) 0.933 310.8 CF
(55,25,45) 0.613 156.9 IF (55,25,115) 0.712 188.7 IF
(55,25,180) 0.728 240.7 IF (55,25,210) 0.731 267.2 IF
(55,75,45) 0.727 183.7 IF (55,75,115) 0.883 215.5 IF
(55,75,180) 0.913 267.5 Acceptable (55,75,210) 0.919 294.0 F
(55,95,45) 0.734 200.6 IF (55,95,115) 0.895 232.4 IF
(55,95,180) 0.928 284.4 CF (55,95,210) 0.934 310.9 CF
(55,100,45) 0.735 205.0 IF (55,100,115) 0.897 236.8 IF
(55,100,180) 0.930 288.8 CF (55,100,210) 0.937 315.3 CF
Note:F=feasible; IF=infeasible; CF=clearly feasible; Best= best feasible;
Benchmark = best among clearly feasible solutions;
Acceptable = feasible and better than the benchmark solution.
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Table 19 Solutions for multiple-constraint formulation of the newsvendor problem.

System p1 p2 p3 Cost Status System p1 p2 p3 Cost Status
(15,25,45) 0.761 0.743 0.749 129.8 IF (15,25,90) 0.761 0.743 0.894 145.4 IF
(15,25,110) 0.761 0.743 0.922 158.1 IF (15,25,145) 0.761 0.743 0.950 184.3 IF
(15,55,45) 0.761 0.915 0.749 141.8 IF (15,55,90) 0.761 0.915 0.894 157.4 IF
(15,55,110) 0.761 0.915 0.922 170.1 IF (15,55,145) 0.761 0.915 0.950 196.4 IF
(15,60,45) 0.761 0.926 0.749 145.2 IF (15,60,90) 0.761 0.926 0.894 160.8 IF
(15,60,110) 0.761 0.926 0.922 173.5 IF (15,60,145) 0.761 0.926 0.950 199.8 IF
(15,75,45) 0.761 0.951 0.749 156.6 IF (15,75,90) 0.761 0.951 0.894 172.2 IF
(15,75,110) 0.761 0.951 0.922 184.9 IF (15,75,145) 0.761 0.951 0.950 211.2 IF
(25,25,45) 0.889 0.743 0.749 133.2 IF (25,25,90) 0.889 0.743 0.894 148.8 IF
(25,25,110) 0.889 0.743 0.922 161.5 IF (25,25,145) 0.889 0.743 0.950 187.8 IF
(25,55,45) 0.889 0.915 0.749 145.2 IF (25,55,90) 0.889 0.915 0.894 160.8 IF
(25,55,110) 0.889 0.915 0.922 173.5 IF (25,55,145) 0.889 0.915 0.950 199.8 IF
(25,60,45) 0.889 0.926 0.749 148.6 IF (25,60,90) 0.889 0.926 0.894 164.2 IF
(25,60,110) 0.889 0.926 0.922 176.9 IF (25,60,145) 0.889 0.926 0.950 203.2 IF
(25,75,45) 0.889 0.951 0.749 160.0 IF (25,75,90) 0.889 0.951 0.894 175.6 IF
(25,75,110) 0.889 0.951 0.922 188.3 IF (25,75,145) 0.889 0.951 0.950 214.6 IF
(30,25,45) 0.919 0.743 0.749 136.3 IF (30,25,90) 0.919 0.743 0.894 151.9 IF
(30,25,110) 0.919 0.743 0.922 164.6 IF (30,25,145) 0.919 0.743 0.950 190.9 IF
(30,55,45) 0.919 0.915 0.749 148.3 IF (30,55,90) 0.919 0.915 0.894 163.9 IF
(30,55,110) 0.919 0.915 0.922 176.6 Best (30,55,145) 0.919 0.915 0.950 202.9 F
(30,60,45) 0.919 0.926 0.749 151.7 IF (30,60,90) 0.919 0.926 0.894 167.3 IF
(30,60,110) 0.919 0.926 0.922 180.0 Acceptable (30,60,145) 0.919 0.926 0.950 206.3 F
(30,75,45) 0.919 0.951 0.749 163.1 IF (30,75,90) 0.919 0.951 0.894 178.7 IF
(30,75,110) 0.919 0.951 0.922 191.4 F (30,75,145) 0.919 0.951 0.950 217.7 F
(40,25,45) 0.954 0.743 0.749 143.8 IF (40,25,90) 0.954 0.743 0.894 159.4 IF
(40,25,110) 0.954 0.743 0.922 172.2 IF (40,25,145) 0.954 0.743 0.950 198.4 IF
(40,55,45) 0.954 0.915 0.749 155.9 IF (40,55,90) 0.954 0.915 0.894 171.5 IF
(40,55,110) 0.954 0.915 0.922 184.2 Acceptable (40,55,145) 0.954 0.915 0.950 210.4 F
(40,60,45) 0.954 0.926 0.749 159.3 IF (40,60,90) 0.954 0.926 0.894 174.9 IF
(40,60,110) 0.954 0.926 0.922 187.6 Benchmark (40,60,145) 0.954 0.926 0.950 213.8 CF
(40,75,45) 0.954 0.951 0.749 170.7 IF (40,75,90) 0.954 0.951 0.894 186.3 IF
(40,75,110) 0.954 0.951 0.922 199.0 CF (40,75,145) 0.954 0.951 0.950 225.2 CF
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