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Estimating sensitivities of portfolio credit risk to the underlying model parameters is an important problem

for credit risk management. In this paper, we consider performance measures that may be expressed as an

expectation of a performance function of the portfolio credit loss and derive closed-form expressions of its sen-

sitivities to the underlying parameters. Our results are applicable to both idiosyncratic and macroeconomic

parameters and to performance functions that may or may not be continuous. Based on the closed-form

expressions, we first develop an estimator for sensitivities, in a very general framework, that relies on the

kernel method for estimation. The unified estimator allows us to further derive two general forms of the

estimators by using conditioning techniques on either idiosyncratic or macroeconomic factors. We then spe-

cialize our results to develop faster estimators for three popular classes of models used for portfolio credit

risk, namely, latent variable models, Bernoulli mixture models, and doubly stochastic models.
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1. Introduction

Large financial institutions are exposed to multiple sources of credit risk. A portfolio approach

is then needed to accurately measure and manage the overall credit exposure. This need has

become especially urgent in view of the ongoing global financial crisis triggered, amongst other

reasons, by poor risk management by some of the largest financial institutions. Some of the key
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issues then include: coming up with an accurate model for measuring portfolio risk; selecting

appropriate performance measures to capture portfolio risk; and devising effective portfolio risk

hedging strategies. Computing sensitivities of the selected performance measure to underlying

parameters, is crucial to risk analysis and management and to the related risk hedging problem.

This is the issue that we address in this paper for a large class of portfolio risk performance

measures.

Accurately modeling dependence between default events is a key issue in selecting a model

for portfolio credit risk. Three types of models that are commonly used in practice are latent

variable models, Bernoulli mixture models and doubly stochastic models. In latent variable models,

default happens if a random variable (called a latent variable) falls below a certain threshold, and

the dependence between default of different firms is modeled by the dependence between their

respective latent variables. These models are motivated by the seminal firm-value work by Merton

(1974). These are used in commercial products such as J.P. Morgan’s CreditMetrics (Gupton et

al. 1997), Moody’s KMV system (Kealhofer and Bohn 2001). It can be shown that the Gaussian

copula model proposed by Li (2000), which is used commonly in pricing credit derivatives, is a

special instance of the latent variable models. In Bernoulli mixture models, default probabilities

of individual obligors depend on each other through a common set of macroeconomic factors.

Conditioned on these factors, default events are independent Bernoulli random variables. These

models are used in CreditRisk+, a product developed by Credit Suisse Financial Products (Credit-

Suisse-Financial-Products 1997). In doubly stochastic models, also known as Cox process models,

default occurs at the first jump time of a doubly stochastic process with a nonnegative intensity

process. The dependence between obligors can be captured by the dependence between the intensity

processes (see, e.g., Duffie and Singleton 1999).

Given a model of joint defaults, portfolio credit loss is a random variable denoting the sum of

losses caused by all default obligors. In many situations, to manage credit risk or to price credit

derivatives, we are interested in performance measures that can be written as expectations of some

performance functions of the credit loss. For instance, the probability that the loss is beyond a

certain threshold and the average loss when it is beyond the threshold are related to popular risk

measures such as value-at-risk and tail conditional expectation; the expected loss when it is within

a certain range (called a tranche) is the building block that defines the price of a collateralized

debt obligation (CDO), a popular credit derivative.

In a model of joint defaults, there are often many parameters. Some of them affect only indi-

vidual obligors, such as the parameters related to an obligor’s idiosyncratic risk; some affect all

obligors in the portfolio, such as the parameters related to macroeconomic factors. Any changes to

these parameters may affect the portfolio credit loss and, thus, the performance measures that we
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are interested in. An approach to characterizing the impact of parameter changes is to calculate

sensitivities, which are the first-order derivatives of the performance measures with respect to the

parameters. Sensitivities provide information on how small movements of parameters affect per-

formance measures. This information is important in risk analysis and portfolio management. For

instance, delta hedging is one of the most fundamental tools in portfolio risk management, where

deltas are the sensitivities of portfolio value with respect to underlying risk factors. In this paper,

we consider the estimation of sensitivities of portfolio credit risk with respect to different param-

eters, either idiosyncratic or macroeconomic. We focus on the three different credit risk models

mentioned earlier, namely, latent variable, Bernoulli mixture and doubly stochastic models. The

results that we develop may be applicable to a broader set of credit risk models. However, we illus-

trate the key ideas through these three popular models. Fast and accurate sensitivity estimators

for wide classes of default models can help analysts better measure and control portfolio credit

risk, which has been becoming more and more important in the wake of the current global financial

crisis.

Derivative estimation for expectations is a classic problem in Monte Carlo simulation. Besides

finite-difference approximations (see, for instance, Section 7.1 of Glasserman (2004)), there are

three main approaches in the simulation literature: perturbation analysis (PA), the likelihood

ratio/score function (LR/SF) method, and weak derivatives (WD). PA was first proposed by Ho

and Cao (1983) to study discrete-event systems. It interchanges the order of differentiation and

expectation and estimates the expectation of the pathwise derivative (see Glasserman (1991) for a

comprehensive introduction). To apply PA, however, the function inside the expectation needs to be

stochastically Lipschitz continuous with respect to the parameter of interest. This greatly limits the

applicability of PA because many functions, e.g., indicator functions, are not Lipschitz continuous.

Remedies have been proposed to solve this problem. One approach is to apply conditional Monte

Carlo method to smooth the discontinuous function. This method is known as smoothed PA (SPA,

see, for instance, Fu and Hu (1997)). Instead of differentiating the function inside the expectation

as in PA, the LR method differentiates the probability measure (see, for instance, Glynn (1987)

and Rubinstein (1989)). It does not require the function inside the expectation be continuous.

Therefore, it is generally more applicable than PA. However, LR estimators often have higher

variances compared to PA estimators when both are applicable. The WD approach dates back to

at least Pflug (1988). It is similar to the LR method, except that it represents the derivative of

the measure as the difference of two (new) measures. Then, the derivative becomes the difference

of two new expectations which can be estimated using sample means. Recently, WD approach

has been further extended to a more general differentiation approach, known as measure-valued

differentiation (see, for instance, Heidergott et al. (2010)). Like the LR method, WD approach is
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generally more applicable than PA, but often yields estimators with larger variance. Unlike PA

and LR method, additional simulations may be necessary in order to implement WD estimators.

For more comprehensive reviews of the different methods for estimating derivatives, readers are

referred to L’Ecuyer (1991) and Fu (2008).

Although most derivative estimation approaches were proposed to analyze dynamic systems,

such as queueing systems, some were also applied to financial applications. Fu and Hu (1995)

and Broadie and Glasserman (1996) are among the early works that use Monte Carlo methods

to estimate price sensitivities of financial options. The same problem has also been studied by

combining Malliavin calculus and the Monte Carlo method (see, for instance, Bernis et al. (2003)).

Chen and Glasserman (2007) showed that the Malliavin calculus approach can be viewed as a

combination of PA and LR methods. Sensitivities of risk measures, such as value-at-risk (VaR) and

conditional VaR (CVaR), have also been studied recently by Hong (2009), Hong and Liu (2009)

and Fu et al. (2009). Estimating price sensitivities for portfolio credit derivatives, which is closely

related to our work, has also been studied. Joshi and Kainth (2004) considered the nth-to-default

credit swaps under the Gaussian copula model of Li (2000). Chan and Joshi (2012) derived finite

proxy schemes, which can be viewed as a combination of pathwise method and LR method, to

study the Greeks when the payoff function may be discontinuous. Chen and Glasserman (2008)

generalized the problem and considered different types of portfolio credit derivatives. They used

both the LR method and SPA. There is some overlap between the problems we study in this

paper and those studied by Chen and Glasserman (2008). First, if we consider only idiosyncratic

parameters, their LR method is applicable to our problem. Second, if we consider only idiosyncratic

parameters with Lipschitz continuous functions, their SPA method is applicable to our problem. In

our paper, however, we consider both idiosyncratic and macroeconomic factors and performance

functions with general forms, and we focus on the use of pathwise derivatives in the estimation, and

compare our method with the LR method when applicable. In addition, it is important to note that

Chen and Glasserman (2008) also solved problems that do not fit into our framework, thus cannot

be solved by our approach. For example, they consider the default credit swaps where the payoffs

depend on the order of defaults, which cannot be written in the portfolio loss function specified

in this paper. In fact, both Joshi and Kainth (2004) and Chen and Glasserman (2008) arrived the

same pathwise estimator for the default credit swaps, where the first one uses the delta functions

and the second uses the smoothing technique. We discuss more about the difference between SPA

and our method in Section 3.4.

In this paper, we consider performance measures that can be written as the expected value of

a performance function of the portfolio credit loss, and are interested in estimating sensitivities of

the performance measures with respect to parameters of default models. We make the following
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contributions. First, we derive a closed-form expression of the sensitivities, which applies to both

idiosyncratic and macroeconomic parameters and to functions that may or may not be continuous,

and interestingly, we find that the differentiability of the performance measure does not depend

on the continuity and differentiability of the performance function. Second, we derive fast and

efficient sensitivity estimators for latent variable, Bernoulli mixture and doubly stochastic models

based on the closed-form expression, and test them through a number of numerical examples.

Third, we show that, to estimate a sensitivity, our method can be applied to provide multiple

unbiased estimators, although a-priori it is difficult to conclude which amongst them has the

smallest variance. This motivates an easy characterization of the optimal linear combination of

these estimators. Empirically, the linear weights need to be estimated and as expected we see that

the resultant estimator performs better than the individual estimators. Last but not least, we can

easily generalize our results to estimate sensitivities of VaR and CVaR when each individual loss

is a continuous random variable and some regularity conditions hold (see the e-companion EC.3

for more details).

The rest of the paper is organized as follows. In Section 2, we derive a closed-form expression

of the sensitivities. In Section 3 we emphasize our method can often yield multiple sample-mean

estimators using the conditioning techniques, which makes it attractive and natural to consider

a linear combination of the proposed estimators to obtain further improvements with almost no

additional cost. We then discuss Monte Carlo estimation of sensitivities under latent variable,

Bernoulli mixture and doubly stochastic models in Section 4. The numerical results for both our

method and LR method are reported in Section 5, followed by conclusions in Section 6. Some

lengthy discussions and extensions of related work are presented in the electronic companion.

2. General Results

Suppose that there are m obligors in a loan portfolio. We let Xi denote a random variable that

determines default of obligor i. Specifically, obligor i defaults if Xi < 0. Note that the dependence

between any two obligors, say i and j, can be modeled through the dependence between Xi and

Xj. In Section 4, we show that latent variable, Bernoulli mixture and doubly stochastic models of

joint default can all be incorporated into this framework. Let li denote the loss due to the default

of obligor i. Following the literature (e.g., Chen and Glasserman (2008)), we assume that li are

constants for all i= 1,2, . . . ,m. However, our results can be generalized easily to situations where

li are mutually independent and bounded random variables that are also independent of Xj for all

i, j = 1,2, . . . ,m. Then, the portfolio credit loss L can be written as

L=
m∑
i=1

li ·1{Xi<0},
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where 1{A} is an indicator function which equals to 1 when A is true and 0 otherwise.

Let p= E[g(L)] denote the performance measure that we are interested in, where g(·) denotes

the performance function. Note that L is a discrete random variable taking values in a finite set

within [0,
∑m

i=1 li]. If g(x) <∞ for every x ∈ [0,
∑m

i=1 li], then E[g(L)] <∞. Many performance

measures of portfolio credit loss can be written in this form. When g(L) = L2, p is the second

moment of L. It can be used to compute the variance of L which is an important measure of

risk. When g(L) = 1{L>y}, p is the probability of having a large loss beyond a given threshold

y. It is also an important measure of risk, and can be used to compute the portfolio value-at-

risk. When g(L) = L · 1{L>y}, p is the average loss beyond a given threshold y. It is again an

important measure of risk, and is closely related to the concept of tail conditional expectation.

When g(L) = (L−S`) ·1{L>S`}− (L−Su) ·1{L>Su}, p is the expected portfolio loss in the tranche

from S` to Su. It is used to price CDOs. When g(L) = Lα · 1{L>y} for α≥ 1, p is αth moment of

truncated random variable and it can be used to model a utility-based shortfall risk. Note that, in

these examples, g(·) may or may not be a continuous function.

Let θ be a parameter of the model of joint defaults, i.e., Xi =Xi(θ) for all i= 1, . . . ,m. If θ is

an idiosyncratic parameter, then it only affects one of the Xis. If θ is a macroeconomic factor,

then it affects all Xi. In this paper, we do not differentiate these two situations. We consider the

first situation as a special case of the second. Then, the loss L= L(θ) and p(θ) = E[g(L(θ))] both

are functions of θ. Our goal is to estimate p′(θ) through a Monte Carlo method. For the work on

estimating p itself, especially when p is a measure of credit risk, readers are referred to Artzner et

al. (1999) and Section 9 of Glasserman (2004) for a comprehensive introduction to risk measures.

We suppose that ν(A) = E [X;Y ∈ A] is absolutely continuous with respect to the Lebesgue

measure and let E [X;Y = t] denote the associated density evaluated at t. Then,

E [X;Y ∈A] = E
[
X ·1{Y ∈A}

]
=

∫
A

E[X;Y = t]dt (1)

for any A⊂<, where < is the set of all real numbers. If (X,Y ) has a joint density fX,Y (·, ·), recall

that

E [X;Y = t] =

∫ +∞

−∞
xfX,Y (x, t)dx.

If Y has a density fY (·), we may write

E [X;Y = t] = fY (t) ·E[X|Y = t]. (2)

Furthermore, if Y has a density fY (·) and Y is independent of X, then E [X;Y = t] = fY (t) ·E[X].

In this paper, we need to use the following lemma of Hong and Liu (2010) on the sensitivity of a

probability function.
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Lemma 1 (Hong and Liu 2010). Suppose that X(θ) is a continuous random variable at any θ

in N (θ0), an open neighborhood of θ0, it is differentiable with probability 1 (w.p.1) at any θ ∈N (θ0),

and there exists a random variable K with E[K] <∞ such that |X(θ0 + ∆θ)−X(θ0)| ≤ K · |∆θ|

for any ∆θ that is close enough to 0. Let ψ(θ, t) = E [X ′(θ);X(θ) = t]. If ψ(θ, t) is continuous at

(θ0,0), then
d

dθ
Pr{X(θ0)< 0}=−E[X ′(θ0);X(θ0) = 0] .

Given Lemma 1, we can prove the following corollary, which may be viewed as an extension or

generalization of the lemma.

Corollary 1. Suppose that, for any i = 1, . . . , k, Xi(θ) is differentiable w.p.1 at any θ ∈

N (θ0), and there exists a random variable Ki with E[Ki]<∞ such that |Xi(θ0 + ∆θ)−Xi(θ0)| ≤

Ki · |∆θ| for any ∆θ that is close enough to 0. We further suppose that Xi(θ) are continu-

ous random variables such that Pr{Xi(θ) = Xj(θ)} = 0 at any fixed θ ∈ N (θ0). Let ψi(θ, t) =

E
[
X ′i(θ)

∏k

j=1,j 6=i 1{Xj(θ)<t};Xi(θ) = t
]
. If ψi(θ, t), i= 1, . . . , k, are continuous at (θ0,0), then

d

dθ
E

[
k∏
i=1

1{Xi(θ0)<0}

]
=−

k∑
i=1

E

[
X ′i(θ0)

k∏
j=1,j 6=i

1{Xj(θ0)<0};Xi(θ0) = 0

]
.

The proof of Corollary 1 is available in the e-companion EC.1. We are ready to present the main

result of this paper.

Theorem 1. Let p(θ) = E[g(L)], where g(·) is a general <-valued function and L =
∑m

i=1 li ·

1{Xi<0} with constant li and random variables Xi, i= 1,2, . . . ,m. Let Θ be an open subset of <.

Suppose that, for any θ ∈Θ and any i= 1, . . . ,m,

1. Xi(θ) is differentiable w.p.1 and there exists a random variable Ki, which may depend on θ,

such that E[Ki]<∞ and |Xi(θ+ ∆θ)−Xi(θ)| ≤ Ki · |∆θ| when |∆θ| is close enough to zero;

2. Xi(θ) is a continuous random variable and Pr{Xi(θ) =Xj(θ)}= 0 for all j 6= i;

3. ψi(θ, y) is continuous at (θ,0) for any aj = 0 or 1, where

ψi(θ, y) = E

[
X ′i(θ)

m∏
j=1,j 6=i

1{(−1)
ajXj<y} ; Xi = y

]
.

Then, for any θ ∈Θ,

p′(θ) =−
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·X ′i(θ) ; Xi = 0} , (3)

where L−i =
∑m

j=1,j 6=i lj ·1{Xj<0}.
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Remark 1. Note that the conditions in Theorem 1 are essentially used to ensure that Corollary

1 can be applied to derive Equation (6). In Sections 3–4, we show that these conditions can be

verified easily and are typically satisfied by latent variable, Bernoulli mixture and doubly stochastic

models.

The proof of Theorem 1 is deferred to the end of this section. It is interesting to see that the

conclusion of Theorem 1 does not depend on the continuity and differentiability of g(·). This differs

from most of the PA literature, which often requires the performance function be differentiable

almost surely and Lipschitz continuous. Although the result is counter-intuitive, it can be explained

by Equation (5) as later shown in the proof, which implies that the value of g(L) is no longer

affected by θ once the values of all indicator functions are given.

Equation (3) provides a sample-mean estimator with the n−1/2 rate of convergence. By analyzing

the structures of different default models in Sections 3–4, we can transform the conditional expec-

tations in Equation (3) to regular expectations, which yields multiple sample-mean estimators. We

show that, in Sections 3–4, this task can be done quite easily based on the conclusion of Theorem

1 for latent variable models, Bernoulli mixture models and doubly stochastic models.

From Equation (3), it is clear that the computational complexity of p′(θ) for this general form

depends on whether the parameter θ is idiosyncratic or macroeconomic. If θ is an idiosyncratic

parameter with respect to a particular obligor i, then p′(θ) in Equation (3) can be simplified to

p′(θ) =−E{[g (L−i + li)− g (L−i)] ·X ′i(θ) ; Xi = 0} ,

which may reduce the complexity. Moreover, the computational complexity of p′(θ) also depends

on that for computing Xi and X ′i(θ) in Equation (3), whose closed-form expressions are model-

dependent. Therefore, we discuss more about this issue with respect to different models studied

in Sections 3 and 4. Readers may be referred to Homescu (2011) for a comprehensive survey on

computational complexity of sensitivity measures.

Given the closed form of Equation (3), we can use a kernel estimator to estimate p′(θ) as in

Hong and Liu (2010). By Equation (1), we have

E [X;Y = 0]≈ 1

2δ
E
[
X ·1{−δ<Y <δ}

]
.

If we have an independent and identically distributed (i.i.d.) sample of (Xi,X
′
i(θ)), denoted as

{(Xi,1,X
′
i,1), . . . , (Xi,n,X

′
i,n)}, then by Equation (3), we can estimate p′(θ) by

p̂′(θ) =− 1

2nδn

n∑
j=1

m∑
i=1

[g (L−i,j + li)− g (L−i,j)] ·X ′i,j ·1{−δn<Xi,j<δn}, (4)

where L−i,j =
∑m

s=1,s6=i ls ·1{Xs,j<0}. By Hong and Liu (2010), we can easily show that, under some

mild conditions, p̂′(θ) is a consistent estimator of p′(θ) if δn → 0 and nδn →∞ as n→∞, and
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√
2nδn

[
p̂′(θ)− p′(θ)

]
converges in distribution to a normal distribution if nδ5

n→ c for some constant

c≥ 0, and the optimal rate of convergence of p̂′(θ) is n−2/5. For instance, we can choose δn = n−1/5

to achieve the optimal rate of convergence. Interested readers may be referred to Hong and Liu

(2010) for more discussion on the kernel method.

The kernel estimator has two advantages. First, it is applicable to a wide class of default models.

As shown in Section 4, the conclusion of Theorem 1 holds for latent variable models, Bernoulli

mixture models and doubly stochastic models, and therefore, the kernel estimator can be applied

to them. Even for models that are not discussed in our paper, the kernel estimator may still be

applicable. Second, the kernel estimator is generally easy to use. It requires only the samples of

(Xi,X
′
i(θ)), i= 1, . . . ,m. It does not require the users to analyze the structures of underlying default

models to derive different estimators.

However, the kernel estimator of Equation (4) has a slower rate of convergence, (nδn)−1/2, than

the n−1/2 of typical Monte Carlo estimators, because the expectations in Equation (3) depend on

the occurrence of probability zero events {Xi = 0}, i= 1, . . . ,m.

In Section 5, we compare our method with kernel method as well as the LR method. For con-

venience, we derive a general formula of the LR estimator for the performance measure function

considered in this paper. Recall that p(θ) = E[g(L(θ))]. Suppose θ can be written as a distributional

parameter. Then,

p(θ) =

∫
<n
g(L(y)) · f(y, θ)dy,

where f(y, θ) is the density function which also involves the parameter θ. Then,

p′(θ) =

∫
<n
g(L(y)) · ∂θf(y, θ)

f(y, θ)
· f(y, θ)dy, = E[g(L) ·SF] ,

where SF = d
dθ

log (f(·, θ))
∣∣∣
θ=θ0

.

One straightforward advantage of LR estimator is that it takes a very simple closed-form expres-

sion and may be easily obtained when LR method is applicable (e.g., θ can be written into some

density function as a distributional parameter). However, when θ is a structural parameter rather

than a distributional parameter, we may need the assumption that g (L(θ)) is differentiable w.p.1,

which may not hold in this paper. Rubinstein (1992) developed so-called “push-out” method to

handle this difficulty. Readers may refer to Asmussen and Glynn (2007) for a detailed discussion

about LR method.

We now prove Theorem 1.

Proof of Theorem 1. In the following analysis we suppress the dependence of Xi on θ at places

for presentation convenience. To analyze p′(θ), we view 1{Xi<0} as a Bernoulli random variable
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and consider all combinations of 1{Xi<0}, i= 1, . . . ,m. Let Bi = 1{Xi<0} and B = (B1, . . . ,Bm).

Because Bi ∈ {0,1}, B takes value from S (m) = {0,1}m with totally 2m elements. For each element

s∈S (m), we let s1 denote the set of obligors whose Bi = 1 and s0 denote the set of obligors whose

Bi = 0. For instance, for s= (1,0,1,0)∈S (4), s1 = {1,3} and s0 = {2,4}. Note that

1{B=s} =
∏
i∈s1

1{Xi<0}
∏
i∈s0

1{Xi≥0}.

Then,

p(θ) = E [g (L)] =
∑

s∈S (m)

E

[
g

(
m∑
i=1

li ·1{Xi<0}

)
·1{B=s}

]

=
∑

s∈S (m)

g

(∑
i∈s1

li

)
·E

[∏
i∈s1

1{Xi<0}
∏
i∈s0

1{Xi≥0}

]
. (5)

Note that when li are random variables that are independent of Xj for all i, j = 1,2, . . . ,m, Equation

(5) can be written as,

p(θ) =
∑

s∈S (m)

E

{
E

[
g

(
m∑
i=1

li ·1{Xi<0}

)
·1{B=s}

∣∣∣∣∣li, i= 1,2, . . . ,m

]}

=
∑

s∈S (m)

E

[
g

(∑
i∈s1

li

)]
·E

[∏
i∈s1

1{Xi<0}
∏
i∈s0

1{Xi≥0}

]
.

The conditional expectation techniques can be applied throughout the following derivations. To

simplify the presentation, however, we assume that li are constants for all i= 1,2, . . . ,m throughout

Sections 2–5. Under the conditions in Theorem 1, we can apply Corollary 1 to Equation (5) and

have

p′(θ) =
∑

s∈S (m)

g

(∑
i∈s1

li

)
· d
dθ

E

[∏
i∈s1

1{Xi(θ)<0}
∏
i∈s0

1{Xi(θ)≥0}

]

= −
∑

s∈S (m)

g

(∑
i∈s1

li

)
·

∑
i∈s1

E

X ′i(θ) ∏
j∈s1,j 6=i

1{Xj<0}
∏
j∈s0

1{Xj≥0} ; Xi = 0


−
∑
i∈s0

E

X ′i(θ) ∏
j∈s1

1{Xj<0}
∏

j∈s0,j 6=i

1{Xj≥0} ; Xi = 0

 . (6)

By Equation (6), it is clear that we can write p′(θ) =
∑m

i=1 Ψi, where Ψi = E[Ai ·X ′i(θ);Xi = 0]

for some Ai. Without loss of generality, we consider Ψm. Note that

S (m) = [S (m− 1)×{1}] ∪ [S (m− 1)×{0}] ,
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where Bm = 1 in the first set and Bm = 0 in the second set. Then, by Equation (6), we have

Ψm = −
∑

s∈S (m−1)×{1}
g

(∑
i∈s1

li

)
·E

X ′m(θ)
∏

j∈s1,j 6=m

1{Xj(θ)<0}
∏
j∈s0

1{Xj(θ)≥0} ; Xm = 0


+

∑
s∈S (m−1)×{0}

g

(∑
i∈s1

li

)
·E

X ′m(θ)
∏
j∈s1

1{Xj(θ)<0}
∏

j∈s0,j 6=m

1{Xj(θ)≥0} ; Xm = 0


= −

∑
s∈S (m−1)

[
g

(∑
i∈s1

li + lm

)
− g

(∑
i∈s1

li

)]

× E

X ′m(θ)
∏
j∈s1

1{Xj(θ)<0}
∏
j∈s0

1{Xj(θ)≥0} ; Xm = 0

 ,
where s has m elements in the first equation and s has m− 1 elements in the second equation.

Recall the definitions of s1 and s0 for S (m− 1). Then, by an analog to Equation (5), we have

Ψm = −
∑

s∈S (m−1)

E

{[
g

(∑
i∈s1

li + lm

)
− g

(∑
i∈s1

li

)]
·X ′m(θ) ·1{B=s}; Xm = 0

}

= −E

{[
g

(
m−1∑
j=1

lj ·1{Xj<0}+ lm

)
− g

(
m−1∑
j=1

lj ·1{Xj<0}

)]
X ′m(θ) ; Xm = 0

}
.

To simplify the notation, we let

L−i =
m∑

j=1,j 6=i
lj ·1{Xj<0}

for all i= 1, . . . ,m, which is the portfolio loss without obligor i. Then,

Ψm =−E{[g (L−m + lm)− g (L−m)] ·X ′m(θ) ; Xm = 0} .

By the symmetry of m and any i= 1, . . . ,m− 1 and by Equation (6), we have

p′(θ) =−
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·X ′i(θ) ; Xi = 0} .

Therefore, we conclude the proof of Theorem 1.

Remark 2. In the proof, we first transform the regular summation term into a combinatorial

form, which facilitates interchanging the order between the differential operator and summation.

Moreover, the final expression is written back in a regular summation form rather than a combi-

natorial one, which can reduce the computational complexity significantly.
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3. Multiple Estimators and Optimal Linear Combination

In this section, we demonstrate the advantages of Equation (3) which for many practically impor-

tant models yields multiple sample-mean estimators. Among these estimators, it may be difficult

to identify the best one in advance. This then motivates us to consider an optimal linear combina-

tion of these estimators. The weights of this estimator are empirically estimated leading to some

estimation bias. However, we note that the resultant estimator is often more efficient and always

at least as good as the the best one. In this section we also compare and contrast the proposed

method to the SPA (smoothed perturbation analysis) method.

We first provide a general framework of developing estimators for p′(θ) by applying conditioning

techniques on both idiosyncratic and macroeconomic factors.

3.1. Conditioning on idiosyncratic factors

Let εi be an idiosyncratic factor that affects only obligor i and is not a function of θ, and let Υi

denote a random variable that characterizes all other random factors of obligor i. Note that εi

and Υi are independent of each other, and Υi = Υi(θ) is a function of θ. The default condition of

obligor i is defined as {εi <Υi}. Suppose we write Xi(θ) = εi−Υi(θ). Then, X ′i(θ) =−Υ′i(θ), and

obligor i defaults if Xi < 0. Let fεi(·) denote the pdf of εi. To ensure Conditions 1–3 of Theorem 1

hold, we require the following conditions on εi and Υi.

(a1). Υi(θ) is continuously differentiable w.p.1 and there exists a random variable Ki, which may

depend on θ, such that E[Ki]<∞ and |Υi(θ+ ∆θ)−Υi(θ)| ≤Ki|∆θ| when |∆θ| is close enough to

zero;

(a2). Υi(θ) is a continuous random variable;

(a3). fεi(·) is continuous a.s. and there exists a constant Bi > 0 such that fεi(·) is bounded from

above by Bi.

Then by Theorem 1, Equation (3) can be further derived as

p′(θ) = −
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·X ′i(θ) ; Xi = 0}

=
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·Υ′i(θ) ; εi = Υi}

=
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·Υ′i(θ) · fεi(Υi)} . (7)

Verification of Conditions (a1)–(a3) is shown in the e-companion EC.1.

3.2. Conditioning on macroeconomic factors

Unless explicitly stated, θ refers to a macroeconomic parameter in this section. Let A be a common

random factor (e.g., a macroeconomic factor) that affects all obligors and is not a function of θ,
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and let B denote a vector that includes all random variables in the system other than A. Note

that B = B(θ) is a function of θ. Suppose that we may write Xi(θ) = A− βi, where βi = βi(B)

is a function of B and, thus, also a function of θ. For presentation convenience we suppress the

dependence of Xi and β on θ at places where there is no ambiguity. Then, Xi = A − βi and

X ′i(θ) = −β′i(θ). Note that A = βi when Xi = 0. Then, Xj = βi − βj and the obligor j defaults if

βi <βj. This motivates us to define L−i =
∑m

j=1,j 6=i lj ·1{βi<βj}. Then,

p′(θ) = −
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·X ′i(θ) ; Xi = 0}

=
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·β′i(θ) ; A= βi}

=
m∑
i=1

E{E{[g (L−i + li)− g (L−i)] ·β′i(θ);A= βi |B}}

=
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·β′i(θ) ·E[1;A= βi |B]}

=
m∑
i=1

E
{

[g (L−i + li)− g (L−i)] ·β′i(θ) · fA|B(βi)
}
, (8)

where fA|B(·) is the conditional density of A conditioned on B. Furthermore, if A and B are

mutually independent, then

p′(θ) =
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·β′i(θ) · fA(βi)} .

The difference between L−i in Equation (7) and L−i in Equation (8) may lead to different

computational complexities of p′(θ). For each i, computing L−i is in the same order, O(m), as

computing L−i. Then, the complexity of p′(θ) become O(m2). However, because L−i =L− li1{Xi<0},

the complexity of computing L−i can be reduced to O(1) if L is computed in advance, and that of

p′(θ) using Equation (7) can be reduced to O(m). On the other hand, we cannot apply this trick

to L−i; but we may first sort β1, β2, . . . , βm to achieve the order of O(m log(m)) as computing p′(θ)

using Equation (8). This finding suggests that conditioning on idiosyncratic factors (yielding L−i)

may provide better estimators compared with conditioning on macroeconomic factors (yielding

L−i), in terms of the computational complexity. When estimating sensitivities with respect to

an idiosyncratic parameter, the computational complexities of different estimators obtained by

conditioning on various random variables seems in the same order, O(m). In fact, it appears difficult

to identify which estimator is the best one, which could be model-dependent, and this motivates

us to consider a linear combination of all available estimators.
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3.3. Optimal Combination of Multiple Estimators

As mentioned earlier, the proposed method can often provide multiple sample-mean estimators, but

we may not be able to identify in advance which one of them is the best in terms of a low variance.

This motivates developing an optimal minimum variance linear combination of these estimators.

Let {γ` = (γ1`, . . . , γk`)
′, ` = 1,2, . . . , n} denote an i.i.d. sample of γ = (γ1, . . . , γk). For each `,

γ1`, . . . , γk` are computed from the same simulation run, thus they are mutually dependent. Setting

γ̄i = 1
n

∑n

`=1 γi`, then γ̄ = (γ̄1, . . . , γ̄k)
′ are k mutually dependent unbiased sample-mean estimators

of γ. Let w = (w1, . . . ,wk)
′ be a vector of weights and γ̃ = w′γ̄. For any constant weight vector w,

γ̃ is an unbiased estimator of γ if w′1 = 1, where 1 is a k-dimension vector with all elements being

1. Our goal is to select a w that minimizes the variance of γ̃.

Let Σ denote the covariance matrix of γ̄. We assume that Σ is positive-definite, i.e., none of the

k estimator γ̄1, . . . , γ̄k can be written as a linear combination of the other k− 1 estimators. Then

Var (γ̃) = Var (w′γ̄) = w′Σw. Therefore, we want to find a w that solves the following optimization

problem:

minimize w′Σw subject to w′1 = 1. (9)

By using the Lagrange relaxation approach, we can find the optimal solution of Problem (9) is

w∗ =
(
1′Σ−11

)−1
Σ−11.

In practice, however, Σ is unknown. Therefore, Σ and w∗ can only be estimated. Because γ`

across `= 1,2, . . . , n are i.i.d., then an unbiased and strongly consistent estimator of Σ is

Σ̂ =
1

n(n− 1)

n∑
`=1

(γ`− γ̄) (γ`− γ̄)
′
.

Then we may estimate w∗ by

ŵ∗ =
(
1′Σ̂−11

)−1

Σ̂−11.

Therefore, we may use γ̂ = ŵ∗
′
γ̄ as the estimator of γ and it is strongly consistent due to the

continuous mapping theorem (Durrett 2005). However, γ̂ is no longer unbiased because of the

dependence between ŵ∗ and γ̄. If an unbiased estimator is necessary, one may estimate w∗ using a

pilot simulation, i.e., a small number of additional simulation runs that are only used to estimate

w∗, so that ŵ∗ and γ̄ can be independent.

It is worthwhile pointing out that, from the numerical results in Section 5, the resultant estimator

obtained above (called “combined estimator” in Section 5) does not always perform significantly

better than the best amongst all multiple estimators. In that case, instead of the optimal linear

combination method, we also suggest a two-phase simulation where one quickly finds the best
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design using a pilot simulation and then generates sample only from that design to get an unbiased

estimator. Nevertheless, the yield of multiple estimators is a natural consequence of our proposed

method, and to efficiently use these estimators is the motivation behind applying either a linear

combination or a two-phase simulation.

3.4. Connections to SPA Method

As is apparent, the estimators we derive above are based on conditioning techniques. We choose a

particular random variable and condition on all others. In this sense, our method can be viewed as

a two-step conditional Monte Carlo method for estimating p′(θ). In the first step, it differentiates

p(θ) and obtains a closed-form expression as in Equation (3); and in the second step, it evaluates

the expression by using conditioning techniques. Indeed, the second step of this method can also

be generalized to the work of Hong and Liu (2010) and Liu and Hong (2011), which derive the

closed-form expressions (similar to the result in Equation (3)) and then use kernel estimators to

estimate the sensitivities of probability functions and option prices, to obtain estimators with faster

rates of convergence.

p(θ)

condition

SPA

differentiation

Our method

p′(θ)

differentiation

condition

Figure 1 Comparison between SPA and our method.

SPA is another two-step conditional Monte Carlo method for estimating sensitivities of expected-

value functions (see, for instance, Fu and Hu (1997) for general discussions and Chen and Glasser-

man (2008) for applications in credit risk management). However, different from our approach,

it conditions in the first step to smooth the function inside of the expectation and differentiates

the expectation in the second step (see Figure 1 for an illustration of the two approaches). We

believe that our method has several advantages compared to SPA. First, it gives a closed-form

expression of the sensitivity in the first step, e.g., Equation (3), which is independent of specific

models. This expression provides insights on the problem itself regardless of the model, and it can

also be used to develop kernel estimators, e.g., the one in Equation (4), which is model-independent
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and can be applied easily. Second, our approach makes conditioning on different random variables

easier. Once the closed-form expression of the sensitivity is given, it is often quite straightforward

to decide what to condition on and to develop multiple estimators, as demonstrated in Section 4

later. For SPA, however, one has to see through both steps (conditioning and differentiation) in

order to decide what to condition on, and therefore, it is often more difficult to apply and to

develop multiple estimators. Note that both our method and SPA method can be viewed as dif-

ferent approaches to achieving similar (possible the same) estimators under a two-step conditional

Monte Carlo framework. See an example of latent variable models in the e-companion EC.2 for an

illustration.

4. Applications to Three Classes of Models

In this section, we apply the results of Theorem 1 to three classes of widely used credit models,

latent variable models, Bernoulli mixture models and doubly stochastic models, to derive sensitivity

estimators that are in general more efficient than the kernel estimators. Specifically, we directly

apply both Equation (7) and Equation (8) to develop multiple estimators of p′(θ) for all three

models of joint defaults. Because the choices of A and B depend on specific models, we illustrate

our idea by working on specific examples with respect to particular parameters when applying

Equation (8).

4.1. Latent Variable Models

We first consider latent variable models where obligor i defaults if a latent variable Yi is below

a threshold di. Merton (1974) considered a one period model where Yi denotes the value of the

obligor one period later, and di denotes the promised debt at that time. The obligor defaults if it

fails to pay the coupon, i.e., Yi <di. By introducing dependence among Yi, i= 1, . . . ,m, the model

can be used to model joint defaults. We now introduce several examples of commonly used latent

variable models.

Example 1 (CreditMetrics and KMV models). As introduced in Frey and McNeil

(2003), both CreditMetrics and KMV models assume that

Yi = aiΓ +σiεi + νi, i= 1, . . . ,m, (10)

where ai = (ai,1, . . . , ai,p) with p <m, Γ = (Γ1, . . . ,Γp)
T follows a multivariate normal distribution

with mean vector 0 and covariance matrix Ω, ε1, . . . , εm are independent standard normally dis-

tributed random variables, and νi is the mean value of Yi. In this model, the random vector Γ

represents the macroeconomic factors and the random variable εi represents obligor i’s idiosyncratic

risk factor. Then, the dependence between Yi and Yj are modeled by their dependence on the com-

mon macroeconomic factors. Let A= (a1, . . . ,am)T . Then, the covariance matrix of (Y1, . . . , Ym) is

AΩA′+ diag(σ2
1, . . . , σ

2
m).
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Example 2 (The model of Li (2000)). Let Ti denote the default time of obligor i. We

assume that the distribution function of Ti is Fi, which is typically an exponential distribution with

rate λi, i.e., Fi(t) = 1− exp(−λit). Then, a loss will be incurred if the obligor defaults before the

predetermined time T , i.e., Ti <T . Let Φ denote the standard normal distribution function. Then,

{Ti <T} is equivalent to {Φ−1 (Fi(Ti))≤Φ−1 (Fi(T ))}. Let Zi = Φ−1 (Fi(Ti)). Note that Zi follows

a standard normal distribution. In this model, Zi is often modeled as Zi = [Yi−E(Yi)]/
√

Var(Yi),

where Yi is defined in Equation (10), E(Yi) =
∑p

j=1 aijµj + νi, and Var(Yi) = aiΩ a′i + σ2
i . Let

di =
√

Var(Yi) ·Φ−1 (Fi(T )) + E(Yi). Then, {Ti <T} is equivalent to {Yi <di}.

Both Examples 1 and 2 are known as Gaussian copula models because Y = (Y1, . . . , Ym)T follows

a multivariate normal distribution. For Examples 1 and 2, for instance, εi is a standard normal ran-

dom variable and Υi = (di−aiΓ− νi)/σi. Equation (7) provides an efficient approach to estimating

p′(θ).

To illustrate how to apply Equation (8) to Gaussian copula models, we consider the following

specific parameters. Suppose that di is a function of a parameter λi, i.e., di = di(λi), (as already in

Example 2), and we are interested in estimating p′(λi) for some i= 1, . . . ,m. When p is the price

of a CDO and λi is the default intensity of obligor i, then p′(λi) is known as delta (Chen and

Glasserman 2008). Without loss of generality, we consider p′(λ1).

Let A = Γj for any j = 1, . . . , p. Without loss of generality, we set A = Γ1. Then, {Yi < di} is

equivalent to {A<βi} where βi = 1
ai1

[di−
∑p

k=2 aikΓk−σiεi− νi]. Let Xi =A−βi. Then,

β′i(λ1) =


d′1(λ1)

a11
, i= 1,

0, i= 2, . . . ,m.

Note that (Γ1, . . . ,Γp)
′ follows a multivariate normal distribution with mean u and covariance

matrix Ω. We let µ−1 and Ω−1 denote the mean vector and covariance matrix of Γ−1 = (Γ2, . . . ,Γp)
′,

and let σ2
1 = Var(Γ1) and ω1 = (Cov(Γ1,Γ2), . . . ,Cov(Γ1,Γp))

′
. Then, by Bock (1985), fΓ1|Γ−1

(·)

is the same as the density of a normal random variable with mean µ̄1 and variance σ̄2
1, where

µ̄1 = µ1 +ω′1Ω−1 (Γ−1−µ−1) and σ̄2
1 = σ2

1 −ω′1Ω−1ω1.

By Equation (8), we have

p′(λ1) = E

{
[g (L−1 + l1)− g (L−1)] · d

′
1(λ1)

a11

· fΓ1|Γ−1
(β1)

}
.

Similarly, by setting A= Γ2, . . . ,Γp, we can also develop another p− 1 sample-mean estimators of

p′(λ1). Combining with the one given by Equation (7), we now have totally p+ 1 sample-mean

estimators of p′(λ1).
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Example 3 (The model of Bassamboo et al. (2008)). It is known that the Gaussian cop-

ula models cannot explain well the extremal dependence among obligors that is observed empirically

(Mashal and Zeevi 2003), which means that the obligors are more likely to default simultaneously

than what the Gaussian copula models predict. Bassamboo et al. (2008) suggested the following

single factor model:

Yi =
ρZ +

√
1− ρ2 εi
W

, i= 1,2, . . . ,m,

where Z denotes the common factor that affects all obligors, εi denotes obligor i’s idiosyncratic

risk, W is a nonnegative random variable that captures a common shock to all obligors, and Z, W ,

and εi are mutually independent. When Z and εi are independent normal random variables and

W = 1, the model becomes the one-factor Gaussian copula model. When W is a random variable,

a small W value will create a common shock to all obligors and cause many of them to default

simultaneously. Bassamboo et al. (2008) show that the model can explain extremal credit risk when

W or W 2 follows a Gamma distribution. Specifically, when W 2 follows a Chi-square distribution,

Yi follows a t-distribution and the model is also known as a t-copula model (Embrechts et al. 2003).

Suppose that W = θE , where E is an exponential random variable with the mean equal to 1 and

θ is the mean of W . Suppose that we are interested in estimating p′(θ), which is the sensitivity of

the portfolio credit risk to the average shock size.

By by letting εi be a standard normal random variable and Υi = (diθE − ρZ)/
√

1− ρ2, Equation

(7) yields the following estimator,

p′(θ) =
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·Υ′i(θ) · fεi(Υi)} . (11)

Besides the estimator in Equation (11), we can also apply Equation (8) to develop two other

estimators. Note that threshold di could be positive or negative, depending on the parameter

settings in Yi. To be consistent with numerical test in Section 5.1, we assume di to be negative.

First, we let A = E and βi =
ρZ+
√

1−ρ2εi
θdi

. Then, {Yi < di} is equivalent to {A < βi}. Let Xi =

A−βi. Then,

β′i(θ) =−ρZ +
√

1− ρ2εi
θ2di

=−βi
θ
,

Let fE(x) = e−x, x≥ 0, denote the density of E . Then, fA|B(x) = fA(x) = fE(x). By Equation (8),

we have

p′(θ) =−
m∑
i=1

E

{
[g (L−i + li)− g (L−i)] ·

βi
θ
· fE(βi)

}
. (12)

Second, we let A=Z. Similarly, we have βi =
θdiE−

√
1−ρ2εi

ρ
and β′i(θ) = diE

ρ
. Let fZ(·) denote the

density of Z. Then, by Equation (8), we have

p′(θ) =
m∑
i=1

E

{
[g (L−i + li)− g (L−i)] ·

diE
ρ
· fZ (βi)

}
. (13)
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Given Equations (11), (12) and (13), we can develop three sample-mean estimators of p′(θ) if

an i.i.d. sample of {Z,E , ε1, . . . , εm} is available. Suppose the i.i.d. sample of {Z,E , ε1, . . . , εm} is

denoted as {(Z1,E1, ε1,1, . . . , εm,1), . . . , (Zn,En, ε1,n, . . . , εm,n)}, the three sample-mean estimators of

p′(θ) given Equations (11), (12) and (13), respectively, are

p′1(θ) =
1

n

n∑
j=1

m∑
i=1

[g (L−i,j + li)− g (L−i,j)] ·
diE√
1− ρ2

· fεi (Υi,j) , (14)

where Υi,j = (diθEj − ρZj)/
√

1− ρ2 and L−i,j =
∑m

s=1,s6=i ls ·1{εs,j<Υs,j},

p′2(θ) =
1

n

n∑
j=1

m∑
i=1

[g (L−i,j + li)− g (L−i,j)] ·
βi,j
θ
· fE(βi,j), (15)

where βi,j = (ρZj +
√

1− ρ2εi,j)/(θdi) and L−i,j =
∑m

s=1,s 6=i ls ·1{βi,j<βs,j}, and

p′3(θ) =
1

n

n∑
j=1

m∑
i=1

[g (L−i,j + li)− g (L−i,j)] ·
diEj
ρ
· fZ (βi,j) , (16)

where βi,j = (θdiEj −
√

1− ρ2εi,j)/ρ and L−i,j =
∑m

s=1,s6=i ls · 1{βi,j<βs,j}. Because p′k(θ), k = 1,2,3,

is a typical sample mean estimator, it is strongly consistent by strong law of large numbers, and

after normalization, it follows a central limit theorem (Durrett 2005). Furthermore, its rate of

convergence is n−1/2, which is faster than the rate of the kernel estimator p̂′(θ) of Equation (4). This

conclusion holds for all the models considered throughout this paper. For the space limitation, we

omit repeating this conclusion for the rest of the models, and we also omit providing the closed-form

expressions of the sample-mean estimators as in Equations (14)–(16).

4.2. Bernoulli Mixture Models

Let Γ = (Γ1, . . . ,Γp)
′ denote a set of common economic factors, where p <m. In Bernoulli mixture

models, the default event of obligor i follows a Bernoulli random variable with a default probability

Qi (0<Qi < 1), and Qi is modeled as a function of Γ, i.e., Qi =Qi(Γ). Furthermore, defaults of all

obligors are independent of each other once Γ is given. Therefore, in Bernoulli mixture models, the

dependence among all obligors are modeled through their dependence on the common economic

factors Γ. The following are a few commonly used Bernoulli mixture models.

Example 4 (CreditRisk+ model). A Bernoulli mixture model is used in CreditRisk+, a

financial product developed by Credit-Suisse-Financial-Products. As introduced in Frey and McNeil

(2003), CreditRisk+ uses Qi = 1− e−w′iΓ, where Γ is a vector of independent gamma distributed

macroeconomics factors and wi = (wi,1, . . . ,wi,p)
′ is a vector of positive weights.

Example 5 (Bernoulli regression models). In Bernoulli regression models, the individual

default probability is modeled as Qi(Γ) = q(Γ,zi), i= 1, . . . ,m where zi is a deterministic vector. As

introduced in Frey and McNeil (2003), a particularly popular choice is

q(Γ,zi) = h (σ′ziΓ +µ′zi) ,
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where h :<→ (0,1) is a strictly increasing function, µ and σ are vectors of regression parameters

and σ′zi > 0. As shown in Frey and McNeil (2003), under some specific choices of Γ and h(·), an

individual obligor’s default may follow a probit-normal or logit-normal mixing-distribution.

We consider only the CreditRisk+ model introduced in Example 4. Suppose that we are interested

in estimating p′(wij) for some i= 1, . . . ,m and j = 1, . . . , p. Without loss of generality, we consider

p′(w11).

Let Ui, i= 1, . . . ,m, be independent uniform(0,1) random variables that are independent of Γ,

and Xi =Ui−Qi, where Qi = 1− exp
(
−
∑p

j=1wijΓj

)
. Then, obligor i defaults if Xi < 0. Here, Ui

is equivalent to εi and Qi is equivalent to Υi in Equation (7), then,

p′(w11) = E
{

[g (L−1 + l1)− g (L−1)] ·Γ1e
w11Γ1

}
. (17)

We next apply Equation (8) to to develop other estimators. Let fΓi(·) denote the density of Γi.

Note that, in this model, Γ1, . . . ,Γp are mutually independent.

First, we let A=−Γ1. Then, we have βi = 1
wi1

[log(1−Ui) +
∑p

k=2wikΓk] and

β′i(w11) =

{
− 1
w2
11

[log(1−U1) +
∑p

k=2w1kΓk] =− β1
w11

, i= 1,

0, i= 2, . . . ,m.

By Equation (8) and similar analysis as in Section 4.1, we have

p′(w11) =−E

{
[g (L−1 + l1)− g (L−1)] · β1

w11

· fΓ1
(−β1)

}
. (18)

Second, we let A=−Γ2 (which can be extended easily to A=−Γj for any j = 2, . . . , p). Then,

βi = 1
wi2

[
log(1−Ui) +

∑p

k=1,k 6=2wikΓk

]
and

β′i(w11) =

{
Γ1
w12

, i= 1,

0, i= 2, . . . ,m.

By Equation (8) and similar analysis, we have

p′(w11) = E

{
[g (L−1 + l1)− g (L−1)] · Γ1

w12

· fΓ2
(−β1)

}
. (19)

Given Equations (17), (18) and (19), we can develop p+ 1 sample-mean estimators of p′(w11) if

an i.i.d. sample of {Γ,U1, . . . ,Um} is available.

4.3. Doubly Stochastic Models

Let {Ni(t) : t≥ 0} denote a nonhomogeneous Poisson process with nonnegative stochastic intensity

process λi = (λi(t) : t ≥ 0). In doubly stochastic models, the default of obligor i occurs at the
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first jump time τi = min{t≥ 0 :Ni(t) = 1}. Then, conditioned on the intensities λi, i= 1, ...,m, the

default time τi of obligor i are mutually independent random variables with

Pr{τi > t|λi}= Pr{N(t) = 0|λi}= exp

{
−
∫ t

0

λi(u)du

}
.

Let Λi =
∫ T

0
λi(u)du and let Ei, i = 1, ...,m, be independent exponential random variables with

mean 1. Then {τi <T} is equivalent to {Ei <Λi}, i.e., obligor i defaults before time T if Ei <Λi.

To model the dependence among the obligors, the intensity process is often modeled as

λi(t) = Sc(t) +Si(t), (20)

where {Sc(t)≥ 0 : t≥ 0} models the common part of the intensity processes of all obligors and

{Si(t)≥ 0 : t≥ 0} models the individual part of obligor i’s intensity process. In this model, Sc(t)

and Si(t), i= 1, ...,m, are often modeled as diffusion processes, e.g.,

dSc(t) = µc (t,Sc(t))dt+σc (t,Sc(t))dBc(t), (21)

dSi(t) = µi (t,Si(t))dt+σi (t,Si(t))dBi(t), (22)

where Bc and Bi, i= 1, ...,m, are mutually independent Brownian motion processes. To ensure the

nonnegativity of Sc and Si, square-root diffusion processes, e.g., CIR processes, are often used.

Example 6 (The model of Duffie and Gârleanu (2001)). Duffie and Gârleanu (2001)

modeled Sc and Si by CIR processes with jumps, i.e.,

dSc(t) = κ(µc−Sc(t))dt+σ
√
Sc(t)dBc(t) + dJc(t),

dSi(t) = κ(µi−Sc(t))dt+σ
√
Si(t)dBi(t) + dJi(t),

where Bc and Bi are mutually independent Brownian motions, and Jc and Ji are mutually inde-

pendent pure-jump processes and also independent of the Brownian motions. Their jump sizes are

independent and exponentially distributed and their jump times are formulated as a series of Pois-

son processes (jump sizes and jump times are also independent). To simulate these processes, we

may simulate the sets of jumps first and add the jump times to the set of discretized time steps and

then apply the Euler scheme at the new set of time steps.

To simulate λi(t) and to evaluate Λi in the doubly stochastic models, we often use the Euler

scheme to discretize Sc(t) and Si(t), i= 1, ...,m (Glasserman 2004). Let k be the number of time

steps in the discretization, and ∆t= T/k and tj = j ·∆t, j = 0,1, ..., k− 1. Furthermore, let Ŝc and

Ŝi, i= 1, ...,m denote time-discretized approximations to Sc and Si. Under the Euler scheme,

Ŝc(tj+1) = Ŝc(tj) +µc

(
tj, Ŝc(tj)

)
∆t+σc

(
tj, Ŝc(tj)

)√
∆tZc,j+1, (23)

Ŝi(tj+1) = Ŝi(tj) +µi

(
tj, Ŝi(tj)

)
∆t+σi

(
tj, Ŝi(tj)

)√
∆tZi,j+1 (24)
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for j = 0,1, ..., k−1 and i= 1,2, ...,m, with Ŝc(0) = Sc(0) and Ŝi(0) = Si(0), where Zc,j+1,Zi,j+1 are

independent standard normal random variables for j = 0, ..., k − 1 and i= 1, ...,m. Then, we can

approximate Λi by

Λ̂i =
k−1∑
j=0

λ̂i(tj)∆t=
k−1∑
j=0

[
Ŝc(tj) + Ŝi(tj)

]
∆t. (25)

Suppose we use the doubly stochastic model defined in Equations (20) to (22) and use the dis-

cretization scheme defined in Equation (25) to evaluate Λi. Furthermore, suppose we are interested

in estimating p′(Si(0)) for i= 1, ...,m. Without loss of generality, we consider p′(S1(0)).

Let Xi =Ei− Λ̂i. Here, Ei is equivalent to εi and Λ̂i is equivalent to Υi in Equation (7), then,

by Equation (7), we have

p′(S1(0)) = E
{

[g(L−1 + l1)− g(L−1)] · Λ̂′1(S1(0)) · fE1
(Λ̂1)

}
, (26)

where

Λ̂′1(S1(0)) =
k−1∑
j=0

dŜ1(tj)

dS1(0)
·∆t

with pathwise derivative

dŜ1(tj)

dS1(0)
=

dŜ1(tj)

dŜ1(tj−1)
· dŜ1(tj−1)

dŜ1(tj−2)
· · · · · dŜ1(t1)

dS1(0)
,

and

dŜ1(tj)

dŜ1(tj−1)
= 1 +

dµ1

(
tj, Ŝ1(tj−1)

)
dŜ1(tj−1)

∆t+
dσ1

(
tj, Ŝ1(tj−1)

)
dŜ1(tj−1)

√
∆tZi,j.

We may also use other individual random factors, Zi,k−1 (defined in Equation (24)), to derive

another set of estimators. Let Xi =−Zi,k−1− ξi, where

ξi =

∑k−2

j=0 λ̂i(tj)∆t+ Ŝc(tk−1)∆t+ Ŝi(tk−2)∆t+µi(tk−2, Ŝi(tk−2))(∆t)2−Ei
σi(tk−2, Ŝi(tk−2))(∆t)3/2

.

Here, −Zi,k−1 is equivalent to εi and ξi is equivalent to Υi in Equation (7), and X ′i(S1(0)) =

−ξ′i(S1(0)) where

ξ′i(S1(0)) =


1

σ1(tk−2,Ŝ1(tk−2))(∆t)1/2
·
[∑k−2

j=0

dŜ1(tj)

dS1(0)
+

dŜ1(tk−2)

dS1(0)
+

dµ1(tk−2,Ŝ1(tk−2))
dS1(0)

∆t

]
− ξ1
σ1(tk−2,Ŝ1(tk−2))

· dσ1(tk−2,Ŝ1(tk−2))
dS1(0)

, i= 1,

0, i 6= 1.

Then, by Equation (7), we have

p′(S1(0)) = E{[g(L−1 + l1)− g(L−1)] · ξ′1(S1(0)) ·φ(−ξ1)} , (27)
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where φ(·) is the density of a standard normal distribution.

To apply Equation (8) to derive other estimators, we let A=−Zc,k−1, where Zc,k−1 is a standard

normal random variable in Equation (23). The default event of obligor i,
{
Ei < Λ̂i

}
is equivalent

to {A<βi}, where

βi =

∑k−2

j=0 λ̂i(tj)∆t+ Ŝi(tk−1)∆t+ Ŝc(tk−2)∆t+µc

(
tk−2, Ŝc(tk−2)

)
(∆t)2−Ei

σc

(
tk−2, Ŝc(tk−2)

)
(∆t)3/2

.

Then,

β′i(S1(0)) =


∑k−1
j=0

dŜ1(tj)

dS1(0)

σc(tk−2,Ŝc(tk−2))(∆t)1/2
, i= 1,

0, i 6= 1.

By Equation (8), we have

p′(S1(0)) = E

[g(L−1 + l1)− g(L−1)] ·
∑k−1

j=0

dŜ1(tj)

dS1(0)

σc

(
tk−2, Ŝc(tk−2)

)
(∆t)1/2

·φ(−β1)

 . (28)

Given Equations (26), (27) and (28), we can develop three sample-mean estimators of p′(S1(0))

if an i.i.d. sample of {E1, . . . ,Em,Zc,1, . . . ,Zc,k,Zi,j, i= 1, . . . ,m, j = 1, . . . , k} is available.

Under the Euler scheme, the computational complexity of Λ̂i is O(k), but the complexity of

computing Λ̂′i(θ) depends on the exact form of parameter θ, so does for p′(θ). If θ is an idiosyncratic

parameter, e.g., θ= S1(0), then it takes O(km) to compute p′(θ) by Equations (26), (27) or (28).

If θ is a macroeconomic parameter, e.g., θ = Sc(0), then it takes O(km2) to compute p′(θ) using

L−i and O(km) to compute p′(θ) using L−i, which is caused by the difference between computing

L−i and L−i.

5. Numerical Experiments

In this section we test the performances of our estimators through three examples, including one for

latent variable models, one for Bernoulli mixture models, and one for doubly stochastic models. In

each example, we consider two performance functions, g(L) = 1{L>y} and g(L) =L ·1{L>y} (denoted

as Cases A and B, respectively), and estimate the dE[g(L)]/dθ for some parameter θ that is in the

model of the joint defaults. For each example and each performance function, we consider three

types of estimators, the LR estimator when it is applicable (we will derive the LR estimator later),

the kernel estimator given by Equation (4) and the various sample-mean estimators developed in

Section 4, and compare their performances. It is worth noting that there are multiple sample-

mean estimators that can be used to estimate p′(θ) by the results in Section 4. Furthermore, these



Hong, Juneja, and Luo: Sensitivity Estimates for Portfolio Credit Risk
24 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2013-02-OA-017

estimators can all be computed by using the sample generated in the same simulation. Therefore,

this motivates us to use linear combinations of these estimators to obtain more efficient estimators.

In all three examples, without additional specifications, there are 100 obligors in the loan portfolio

(i.e., m = 100) and the loss due to default of obligor i equals to 100 (i.e., li = 100 for all i =

1, . . . ,100). In both performance functions, we set y = 2000, i.e., we are interested in the cases

where at least 20 obligors default. Other parameters of examples will be introduced according to

their models.

To use the kernel estimator of Equation (4), we need to choose the bandwidth parameter δn. As

shown in Hong and Liu (2010), to achieve the optimal rate of convergence, δn should be in the order

of n−1/5. Then, we set δn = cn−1/5 for some positive constant c. We test the kernel estimators with

different values of c for all three examples and find that c= 1 is always a good choice. Therefore,

we set c= 1 for all three examples.

5.1. A Latent Variable Model

We consider the model of Bassamboo et al. (2008) introduced in Example 3. We suppose that both

the common factor Z and idiosyncratic factor εi follow a standard normal distribution, ρ = 0.6,

di =−2, for all i, and the common shock factor W = θE where θ = 1 and E follows an exponen-

tial distribution with mean 1. We are interested in estimating the sensitivities of the expected

performances of the two performance functions with respect to the average shock size θ.

To obtain the LR estimator, we consider θ as the mean parameter of W (i.e., we transfer the

structural parameter into a distributional parameter). Then, θ will not appear in other random

variables, which allows us to obtain the score function (SF). The density function of W , fW (x) =

1
θ
fE(x/θ) = 1

θ
e−x/θ for x≥ 0. Then,

p′(θ) = E{g (L) ·SF}= E{g (L) · (−1 + E)/θ} , (29)

where SF = d
dθ

log
(

1
θ
e−W/θ

)
=− 1

θ
+ W

θ2
= −1+E

θ
. Given Equation (29), we obtain the LR estimator

of p′(θ) if an i.i.d. sample of (Z,E , ε1, . . . , εm) is available.

To simulate the joint defaults, we can generate an i.i.d. sample of (Z,E , ε1, . . . , εm), denoted by

{(Z`,E`, ε1,`, . . . , εm,`) : `= 1,2, . . . , n}. Based on the sample, we may compute the kernel estimator

of Equation (4), the LR estimator of Equation (29), the three sample-mean estimators of Equa-

tions (14)–(16) (which we denote as Estimators 1, 2, 3, respectively), and the combined estimator

calculated from the three sample-mean estimators (see Section 3.3 for derivation). We report the

estimates (denoted by M̄) and the standard errors of these estimators (denoted by s.e.) in Table 1

with different sample sizes.

From Table 1, we have several findings for both performance functions. First, the kernel estimator

can appropriately estimate the sensitivities. This finding demonstrates the correctness of Theorem
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Table 1 The estimates and their standard errors (s.e.) for the model of Bassamboo et al. (2008).

Sample size n 104 105 106

Case A M̄ s.e. (×10−2) M̄ s.e. (×10−3) M̄ s.e. (×10−3)
Estimator 1 -0.2052 2.2 -0.2111 7.1 -0.2048 2.2
Estimator 2 -0.2041 0.12 -0.2072 0.39 -0.2068 0.12
Estimator 3 -0.2061 0.21 -0.2081 0.66 -0.2064 0.21
Combined -0.2046 0.11 -0.2074 0.34 -0.2067 0.11

Kernel -0.2260 2.4 -0.2091 7.5 -0.2019 2.6
LR -0.2144 0.36 -0.2069 1.1 -0.2069 0.35

Case B M̄ s.e. M̄ s.e. M̄ s.e.
Estimator 1 -983.8 47.5 -1003.7 15.4 -983.2 4.75
Estimator 2 -971.1 8.1 -989.9 2.6 -988.5 0.81
Estimator 3 -991.4 9.6 -994.0 3.0 -986.4 0.96
Combined -979.5 6.2 -991.4 2.0 -987.7 0.62

Kernel -1029.1 52.3 -1004.1 16.5 -977.8 5.6
LR -1021.1 19.5 -989.7 6.1 -990.1 1.9

Note: Estimators 1–3 are specified by Equations (14)–(16), respectively.

1 and the usefulness of the kernel estimator. Second, the sample-mean estimators and the combined

estimator appear to have a rate of convergence of n−1/2 and the kernel estimator appears to have

a rate of convergence nearly n−1/2. This finding supports our motivation of deriving sample-mean

estimators. Third, the combined estimator has a smaller standard error than the three sample-

mean estimators. Fourth, conditioning on a common risk factor, e.g., Estimators 2 and 3, may yield

estimators that have smaller standard error than conditioning solely on an idiosyncratic risk factor

(as in Chen and Glasserman (2008)). Fifth, the LR estimator achieves the same rate of convergence

of n−1/2 as the sample-mean estimators, but has larger standard errors than the best sample-mean

estimator (and also the combined estimator).

We next consider the time taken to compute each estimate. Unlike the previous experiment only

using one i.i.d sample to obtain all the estimates, the numerical test for timing is carried out by using

different i.i.d samples for different estimates. We run the Matlab code on a 3.40GHz Intel Quad-Core

PC with 4 GB RAM for our numerical tests. Note that even though there are 4 cores, the Matlab

code is always executed using a single core. The computational times for computing Estimator

1, combined estimator, kernel estimator and LR estimator with 100 independent replications are

reported in Table 2. Note that we fix the number of obligors m= 100 on the left panel of Table 2,

while we fix the sample size n= 104 on the right panel.a

We find that the time of computing Estimator 1 and that of computing the kernel estimator are

almost the same, and they are higher than that of computing the LR estimator. From the left panel

in Table 2, the time of computing the combined estimator is about one-order larger than other

a The threshold y also increases in proportion to the number of obligors m.
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Table 2 Time (in second) taken to compute each estimator with 100 replications.

Sample size n 104 105 106

Estimator 1 0.09 0.79 8.10
Combined 1.21 11.90 122.88

Kernel 0.08 0.69 7.02
LR 0.05 0.43 4.31

Number of Obligors m 10 100 1000
Estimator 1 0.02 0.09 0.86
Combined 0.05 1.21 69.88

Kernel 0.03 0.08 0.81
LR 0.02 0.05 0.50

estimators (≈ 15 times greater than that of computing Estimator 1), which is reasonable based on

the analysis of the computational complexities of different estimators as shown in Section 3. Recall

that the computational complexity of either Estimators 2 or 3 is O(m2) and that of Estimator 1

is O(m), then the computational complexity of the combined estimator, calculated based on the

three sample-mean estimators, is also O(m2). This is also consistent with the result in the right

panel. The time of computing Estimator 1, kernel estimator and LR estimator increases linearly as

m increases while that of computing the combined estimator grows faster than O(m). In this case,

the benefit of the combined estimators (as well as Estimators 2 and 3) may be canceled out due to

a higher computational complexity. Then we suggestion to derive estimators by conditioning only

on idiosyncratic factors for macroeconomic parameters when the number of obligors is large.

5.2. A Bernoulli Mixture Model

We consider CreditRisk+ model introduced in Example 4. We suppose that Γ is a 5-dimensional

vector of independent gamma distributed macroeconomics factors all with shape parameter 3 and

scale parameter 0.1 (i.e., Γj ∼ Gamma(3,0.1) for j = 1, . . . ,5), and all weights equal to 0.1 (i.e.,

wij = 0.1 for i= 1, . . . ,100 and j = 1, . . . ,5). We are interested in estimating the sensitivities of the

expected performances of the two performance functions with respect to w11.

For this example, it is not clear to us how the LR method may be applied directly since we are not

able to write the parameter w11 as a distributional parameter of a single random variable. “Push-

out” techniques may be helpful when the structural parameter w11 cannot be easily converted to

a distributional parameter (Rubinstein 1992). However, it is model-dependent and may not be

suitable for general models. Thus, we do not consider LR method for this example.

In this example we have six sample-mean estimators (denoted as Estimators 1 to 6). Estimator 1

is the one given by Equation (17), Estimator 2 is the one given by Equation (18), and Estimators 3

to 6 are the ones given by Equation (19) applied to Γ2 to Γ5 respectively. The combined estimator

is calculated by combining Estimators 1 to 6.

We report the performances of the kernel estimators, the six sample-mean estimators and the

combined estimators for different sample sizes in Table 3. From the table we see that the findings

of Section 5.1 also hold in this example, except that the estimator conditioning on the idiosyncratic

risk factor (i.e., Estimator 1) has a lower standard error than the estimators conditioning on the
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Table 3 The estimates and their standard errors for the CreditRisk+ model.

Sample size n 104 105 106

Case A M̄ s.e. (×10−3) M̄ s.e. (×10−4) M̄ s.e. (×10−4)
Estimator 1 0.0100 0.60 0.0099 1.9 0.0099 0.61
Estimator 2 0.0091 1.9 0.0099 6.4 0.0095 2.0
Estimator 3 0.0071 2.3 0.0104 9.4 0.0093 2.8
Estimator 4 0.0071 2.1 0.0098 8.5 0.0096 2.9
Estimator 5 0.0094 2.7 0.0097 8.6 0.0093 2.8
Estimator 6 0.0075 2.0 0.0099 9.1 0.0095 2.9
Combined 0.0095 0.58 0.0099 1.9 0.0098 0.59

Kernel 0.0090 1.0 0.0100 4.4 0.0095 1.7

Case B M̄ s.e. M̄ s.e. M̄ s.e.
Estimator 1 23.85 1.3 23.65 0.41 23.52 0.13
Estimator 2 21.97 3.9 23.49 1.35 22.74 0.42
Estimator 3 16.95 4.9 24.48 1.98 22.38 0.59
Estimator 4 17.79 4.4 23.04 1.79 23.00 0.60
Estimator 5 22.02 5.6 22.99 1.82 22.44 0.59
Estimator 6 17.78 4.1 23.56 1.93 22.84 0.61
Combined 22.87 1.2 22.86 0.40 22.84 0.12

Kernel 21.59 2.2 23.46 0.92 22.86 0.36
Note: Estimators 1,2 and 3–6 are specified by Equations (17),(18), and (19), respectively.

common risk factors (i.e., Estimators 2 to 6). That implies that it is hard to identify which one is

better in advance among the estimators derived by conditioning on either idiosyncratic factors or

macroeconomic factors.

We also report the computation times of different estimators in Table 4. It is interesting to find

that the computational time of computing Estimator 1 and that of computing the kernel estimator

are almost the same, and also in the same order of computing other estimators. This is because the

computational complexities of all estimators are O(m) when the parameter w11 is an idiosyncratic

parameter. The time of computing the combined estimator, which is calculated based on the six

sample-mean estimators, is less than the total time of computing each of them. This finding suggests

the advantage of using a linear combination of multiple estimators for idiosyncratic parameters.

Table 4 Time (in second) taken to compute each estimator with 100 replications.

Sample size n 104 105 106

Estimator 1 0.05 0.40 3.47
Estimator 2 0.10 0.65 5.51

Estimators 3–6 0.20 1.68 14.79
Combined 0.26 2.09 18.43

Kernel 0.06 0.40 3.48
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5.3. A Doubly Stochastic Model

We consider a doubly stochastic model where both Sc(t) and Si(t), i= 1, . . . ,m, follow CIR pro-

cesses. Specifically, suppose that

µc(t,Sc(t)) = κc (µc−Sc(t)) and σc(t,Sc(t)) = σc
√
Sc(t),

µi(t,Si(t)) = κi (µi−Si(t)) and σi(t,Si(t)) = σi
√
Si(t) , i= 1, ...,m, (30)

where κc = 0.002, µc = 0.1, σc = 0.02, and κi = 0.001, µi = 0.07, σi = 0.01 for all i= 1, . . . ,m. The

initial values Sc(0) = 0.1 and Si(0) = 0.08 for all i = 1, . . . ,m, and the time horizon T = 1. We

are interested in estimating the sensitivities of the expected performances of the two performance

functions with respect to S1(0). In the numerical study we use the discretization scheme introduced

in Section 4.3 to evaluate Λi, the integral of the default intensity of obligor i for all i= 1, . . . ,m.

The LR method cannot be directly applied to doubly stochastic models if we use Equation

(25) under Euler scheme because the structural parameter S1(0) cannot be fully converted to a

distributional parameter. To make LR method work, we approximate Λi by

Λ̂i =
k∑
j=1

λ̂i(tj)∆t=
k∑
j=1

[
Ŝc(tj) + Ŝi(tj)

]
∆t, (31)

and use the conditional technique of Hong and Liu (2010). After some derivation (see the e-

companion EC.1 for detailed derivation), we have the LR estimator

p′(S1(0)) = E

g (L) ·

(
Ŝ1(t1)−κ1µ1∆t

)2

−σ2
1S1(0)∆t− (1−κ1∆t)

2
S2

1(0)

2σ2
1S

2
1(0)∆t

 . (32)

Besides the LR estimator, we have three other sample-mean estimators. Estimator 1 is given

by Equation (26), and Estimators 2 and 3 are given by Equations (27) and (28) respectively. The

combined estimator is calculated by combining Estimators 1 to 3.

In this example we fix the sample size n = 106 and investigate how the number of time steps

affects the accuracy of the estimators. We report the estimates (M̄) and their standard errors (s.e.)

for different numbers of time steps in Table 5 with Λ̂i given by Equation (25) and Table 6 with

Λ̂i given by Equation (31). From both tables, we see that the performances of Estimators 2, 3 and

the LR estimator deteriorate as the number of time steps goes up. This deterioration is typical for

estimators that condition on the last time step (see, for instance, Hong and Liu (2010) for some

more examples). However, in our example, both Estimator 1 (and thus the combined estimator)

and the kernel estimator are not affected by the numbers of time steps. In this example. the LR

estimator performs poorly when the sample size is n = 106. To make sure the LR estimator is

correct, we run the experiment with time step k= 4 and sample size n= 1010, and other parameters



Hong, Juneja, and Luo: Sensitivity Estimates for Portfolio Credit Risk
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2013-02-OA-017 29

Table 5 The estimates and their standard errors for the doubly stochastic model with Λ̂i given by Equation

(25).

Time steps k 2 4 12
Case A M̄ s.e. (×10−3) M̄ s.e. (×10−3) M̄ s.e. (×10−3)

Estimator 1 0.0516 0.20 0.0519 0.20 0.0518 0.20
Estimator 2 0.0491 3.7 0.0587 6.9 0.0412 12.7
Estimator 3 0.0573 2.7 0.0499 4.2 0.0447 9.1
Combined 0.0516 0.20 0.0519 0.20 0.0518 0.20

Kernel 0.0518 0.64 0.0523 0.64 0.0528 0.64

Case B M̄ s.e. M̄ s.e. M̄ s.e.
Estimator 1 119.22 0.42 119.90 0.42 119.53 0.42
Estimator 2 113.30 7.74 133.13 14.60 99.30 26.7
Estimator 3 130.89 5.67 114.51 8.93 106.02 19.2
Combined 119.24 0.42 119.89 0.42 119.53 0.42

Kernel 119.67 1.34 120.68 1.35 121.78 1.36
Note: Estimators 1,2 and 3 are specified by Equations (26),(27), and (28), respectively.

Table 6 The estimates and their standard errors for the doubly stochastic model with Λ̂i given by Equation

(31).

Time steps k 2 4 12
Case A M̄ s.e. (×10−3) M̄ s.e. (×10−3) M̄ s.e. (×10−3)

Estimator 1 0.0514 0.20 0.0516 0.20 0.0520 0.20
Estimator 2 0.0534 3.9 0.0462 6.1 0.0479 13.9
Estimator 3 0.0537 2.6 0.0448 4.0 0.0496 9.7
Combined 0.0514 0.20 0.0516 0.20 0.0520 0.20

Kernel 0.0513 0.64 0.0516 0.64 0.0523 0.64
LR 0.0680 187.2 0.1864 265.3 -0.4638 460.0

Case B M̄ s.e. M̄ s.e. M̄ s.e.
Estimator 1 118.80 0.42 119.22 0.42 120.13 0.42
Estimator 2 122.47 8.14 106.54 12.84 109.85 29.3
Estimator 3 123.59 5.53 103.99 8.42 115.23 20.5
Combined 118.80 0.42 119.21 0.42 120.13 0.42

Kernel 118.46 1.34 119.08 1.34 120.90 1.35
LR 183.57 424.31 414.97 601.39 -1186.6 1042.5

Note: Estimators 1,2 and 3 are specified by Equations (26),(27), and (28), respectively.

remaining the same. It takes around 84 hours to obtain the estimate 0.0537 with a standard error

0.0024.

We report the computational times of computing Estimator 1, combined estimator, kernel esti-

mator and the LR estimator when sample size n= 106 in Table 7. From Table 7, we find that it

almost takes the same amount of time to compute Estimator 1, kernel estimator and LR estimator.

Moreover, the time for the combined estimator increases slightly compared with other estimators

even though the combined estimator is obtained after computing the three sample-mean estimates.
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Table 7 Time (in second) taken to compute each estimator with 100 replications.

Time steps k 2 4 12
Estimator 1 18.60 28.94 68.13
Combined 30.68 35.72 84.81

Kernel 18.67 24.96 68.48
LR 17.38 23.54 67.28

6. Conclusions

In this paper we derive a closed-form expression for the sensitivities of the expected value of

a performance function of a portfolio credit loss with respect to a parameter in the model of

joint defaults. We show that the differentiability does not depend on the differentiability of the

performance function. Based on the closed-form expression, which is in the form of a conditional

expectation, we propose two methods to estimate the sensitivities. First, we propose a kernel

estimator which is typically easy to use, applicable to many models of joint default, but has a

rate of convergence slower than n−1/2. Second, we propose to use model information to further

convert the conditional expectation to unconditioned expectations and use sample-mean estimators

to estimate the sensitivities. We demonstrate the second method on three commonly used models

of joint defaults, latent variable, Bernoulli mixture and doubly stochastic models. We show that

multiple sensitivities can be derived based on the second method. This suggests to combined

all sample-mean estimators to further improve the estimation performance. We test the kernel

estimator, various sample-mean estimators and the combined estimator through three examples

and also compare them with the estimators derived by LR method, and the numerical results show

that various sample-mean estimators by our method often work well.

For future work, we will study how to estimate sensitivities when the joint defaults are modeled

using frailty models or self excited models, which are closely related to doubly stochastic models

but are capable of capturing default clustering effects (see, for instance Giesecke et al. (2010)

for a thorough introduction of these models). In these models, the intensity function may not

be continuous with respect to the parameter that we want to take derivative to. Therefore, the

conditions of Theorem 1 may not hold and the sensitivities may be more difficult to estimate than

under doubly stochastic models.
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Electronic Companion

EC.1. Technical Remarks

Proof of Corollary 1. Let X(θ) = maxi=1,...,kXi(θ). Then X(θ) is non-differentiable when there

exist some i 6= j such that X(θ) =Xi(θ) =Xj(θ) or X`(θ) is non-differentiable for ` = 1,2, . . . , k.

Because X`(θ) is differentiable w.p.1 and Pr{Xi(θ) =Xj(θ)}= 0, X(θ) is also differentiable w.p.1

at any θ ∈N (θ0). Let K=
∑k

i=1Ki. Then, E [K]<∞ and |X(θ0 + ∆θ)−X(θ0)| ≤ K · |∆θ| for any

∆θ that is close enough to 0.

Let i∗ = argmaxi=1,...,kXi(θ). Then, X ′(θ) =X ′i∗(θ) w.p.1. Note that

ψ(θ, t) = E [X ′(θ);X(θ) = t] = E [X ′i∗(θ);Xi∗(θ) = t] =
k∑
i=1

E
[
X ′i(θ)1{i∗=i};Xi(θ) = t

]
=

k∑
i=1

E

[
X ′i(θ)

k∏
j=1,j 6=i

1{Xj(θ)<Xi(θ)};Xi(θ) = t

]
=

k∑
i=1

ψi(θ, t).

Therefore, ψ(θ, t) is continuous at (θ0,0) because ψi(θ, t) are continuous at (θ0,0). Then, the con-

clusion of this corollary follows directly from Lemma 1.

Verification of Conditions (a1)–(a3). We next verify that Conditions (a1)–(a3) in Section 3.1

imply the conditions of Theorem 1. Note that Xi(θ) = εi −Υi(θ) and εi is a continuous random

variable that is independent of all other variable factors, so Conditions 1 and 2 of Theorem 1 are

satisfied. Furthermore, note that

ψi(θ, y) =−E

[
Υ′i(θ)

m∏
j=1,j 6=i

1{(−1)
aj [εj−Υj(θ)]<y}; εi = Υi(θ) + y

]
.

Let ξi denote all random factors other than εi. Note that ξi and εi are mutually independent, and

Υi(θ) and Υ′i(θ) are fully determined when ξi is given. By conditioning on ξi, we have

ψi(θ, y) = −E

{
E

[
Υ′i(θ)

m∏
j=1,j 6=i

1{(−1)
aj [εj−Υj(θ)]<y}; εi = Υi(θ) + y

∣∣∣ ξi
]}

= −E

[
Υ′i(θ)

m∏
j=1,j 6=i

1{(−1)
aj [εj−Υj(θ)]<y} ·E

[
1; εi = Υi(θ) + y

∣∣∣ Υi(θ)
]]

= −E

[
Υ′i(θ)

m∏
j=1,j 6=i

1{(−1)
aj [εj−Υj(θ)]<y} · fεi (Υi(θ) + y)

]
, (EC.1)

where Equation (EC.1) follows from Equation (2) and the independence between εi and Υi(θ).

Given the conditions of the theorem, we can easily check that the term inside of the expectation of

Equation (EC.1) is continuous w.p.1 with respect to (θ, y) and is dominated by a random variable
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KiBi with a finite first moment. Then, by the dominated convergence theorem (Durrett 2005),

ψi(θ, y) is continuous in (θ, y), i.e., Condition 3 of Theorem 1 also holds. Therefore, the conclusion

of Theorem 1 holds.

Then, by Theorem 1,

p′(θ) =
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·Υ′i(θ) ; εi = Υi}

=
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·Υ′i(θ) · fεi(Υi)} ,

where the last equation can be derived similar to Equation (EC.1).

Derivation of the LR estimator in Section 5.3. Since the parameter S1(0) can be viewed as a

distributional parameter under the discretization scheme in Equation (31), we now apply the

conditioning technique in Hong and Liu (2010) to derive the LR estimator in Equation (32).

Let fi(·|si−1) denote the conditional density function of Ŝ1(ti) given that Ŝ1(ti−1) = si−1, i =

1,2, . . . , k. By Equation (24),

f1 (x|S1(0)) =
1

σ1 (0, S1(0))
√

∆t
·φ
(
x−S1(0)−µ1 (0, S1(0))∆t

σ1 (0, S1(0))
√

∆t

)
,

where φ(·) is the density function of standard normal distribution. Then, the SF can be expressed

as

SF =
d

dS1(0)
log
(
f1

(
Ŝ1(t1)|S1(0)

))
=
Ŝ1(t1)−S1(0)−µ1 (0, S1(0))∆t

σ1 (0, S1(0))
√

∆t
·
[

1

σ1 (0, S1(0))
√

∆t

(
1 +

dµ1 (0, S1(0))

dS1(0)

)
+
Ŝ1(t1)−S1(0)−µ1 (0, S1(0))∆t

σ2
1 (0, S1(0))

√
∆t

· dσ1 (0, S1(0))

dS1(0)

]
− 1

σ1 (0, S1(0))

dσ1 (0, S1(0))

dS1(0)

=

(
Ŝ1(t1)−κ1µ1∆t

)2

−σ2
1S1(0)∆t− (1−κ1∆t)

2
S2

1(0)

2σ2
1S

2
1(0)∆t

, (EC.2)

where Equation (EC.2) is by plugging Equation (30) with i= 1. Then, the LR estimator is

p′(S1(0)) = E{g (L) ·SF}= E

g (L) ·

(
Ŝ1(t1)−κ1µ1∆t

)2

−σ2
1S1(0)∆t− (1−κ1∆t)

2
S2

1(0)

2σ2
1S

2
1(0)∆t

 .

EC.2. SPA Estimators in A Latent Variable Model

We now use Example 3 (The model of Bassamboo et al. (2008)) to derive SPA estimators. We

consider only the case that the performance function is g(L) = 1{L>y}. In fact, it is not clear how

to derive SPA estimators for general performance functions. Conditioning on {Z,E},

E [g(L)|Z,E ] = Pr

{
m∑
i=1

li1{Yi≤di} > y
∣∣∣Z,E}
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= Pr

{
ε1 ≤

θd1E − ρZ√
1− ρ2

∣∣∣Z,E} ·Pr

{
m∑
i=2

li1{Yi≤di} > y− l1
∣∣∣Z,E}

+Pr

{
ε1 >

θd1E − ρZ√
1− ρ2

∣∣∣Z,E} ·Pr

{
m∑
i=2

li1{Yi≤di} > y
∣∣∣Z,E} .

We can recursively use the same approach to deal with Pr
{∑m

i=2 li1{Yi≤di} > y− l1
∣∣∣Z,E} and

Pr
{∑m

i=2 li1{Yi≤di} > y
∣∣∣Z,E}. Then, after m iterations, we have

E [g(L)|Z,E ] =
∑

s∈S (m)

∏
i∈s1

Fεi

(
θdiE − ρZ√

1− ρ2

)
·
∏
i∈s0

F̄εi

(
θdiE − ρZ√

1− ρ2

)
·1{∑

i∈s1 li>y}, (EC.3)

where Fεi(·) is the cumulative distribution function (cdf) of εi, F̄εi(·) = 1− Fεi(·), and S (m) =

{0,1}m with s1 denoting the set of default obligors and s0 denoting the set of non-default obligors.

Because the closed-form expresson in Equation (EC.3) is Lipschitz continuous, then we can apply

SPA method to obtain a SPA estimator,

p′(θ) =
∂

∂θ
E{E[g(L)|Z,E ]}= E

{
∂

∂θ
E[g(L)|Z,E ]

}

= E

 ∑
s∈S (m)

∑
j∈s1

fεj

(
θdjE − ρZ√

1− ρ2

)
· djE√

1− ρ2
·
∏

i∈s1,i6=j

Fεi

(
θdiE − ρZ√

1− ρ2

)

·
∏
i∈s0

F̄εi

(
θdiE − ρZ√

1− ρ2

)
·1{∑

i∈s1 li>y}−
∑
j∈s0

fεj

(
θdjE − ρZ√

1− ρ2

)
· djE√

1− ρ2

·
∏
i∈s1

Fεi

(
θdiE − ρZ√

1− ρ2

)
·
∏

i∈s0,i6=j

F̄εi

(
θdiE − ρZ√

1− ρ2

)
·1{∑

i∈s1 li>y}

 . (EC.4)

Similarly, by conditioning on {E , ε1, . . . , εm}, we know that

E [g(L)|E , ε1, . . . , εm] =
∑

s∈S (m)

Pr

{⋃
i∈s1

{
Z ≤ θdiE −

√
1− ρ2εi
ρ

}
⋃
i∈s0

{
Z >

θdiE −
√

1− ρ2εi
ρ

}∣∣∣E , ε1, . . . , εm} ·1{∑
i∈s1 li>y}

=
∑

s∈S (m)

[
FZ

(
θdi1∗E −

√
1− ρ2εi1∗
ρ

)
−FZ

(
θdi0∗E −

√
1− ρ2εi0∗
ρ

)]
·1{θd

i1∗
E−
√

1−ρ2ε
i1∗
>θd

i0∗
E−
√

1−ρ2ε
i0∗
} ·1{

∑
i∈s1 li>y},

where i1∗ = argmini∈s1

{
θdiE−

√
1−ρ2εi

ρ

}
and i0∗ = argmaxi∈s0

{
θdiE−

√
1−ρ2εi

ρ

}
. Then,

p′(θ) = E

{ ∑
s∈S (m)

[
fZ

(
θdi1∗E −

√
1− ρ2εi1∗
ρ

)
·
di1∗E
ρ
− fZ

(
θdi0∗E −

√
1− ρ2εi0∗
ρ

)
·
di0∗E
ρ

]

·1{θd
i1∗
E−
√

1−ρ2ε
i1∗
>θd

i0∗
E−
√

1−ρ2ε
i0∗
} ·1{

∑
i∈s1 li>y}

}
(EC.5)
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There are several things we would like to point out. First, the reason we can easily derive

multiple SPA estimators is because of the general closed-form expression in Equation (3) (also

Equations (7) and (8) in Section 3), which implies the possibility of deriving SPA estimators under

some transformations. In fact, if we write Equations (11) and (13) into the combinatorial form,

we find that Equation (EC.4) is the same as Equation (11) and Equation (EC.5) is the same as

Equation (13). Second, however, without the general form of Equation (3), it is not easy to convert

Equations (EC.4) and (EC.5) into the neat form as in (11) and (13). Therefore, the computational

complexity of both (EC.4) and (EC.5) are at least O(2m), which is much higher compared with

their counterpart in (11) and (13) in the paper.

EC.3. Extension to Sensitivities of VaR and CVaR

Our method can be extended to compute the sensitivity of VaR and Conditional VaR (CVaR)

when li are mutually independent continuous random variables and independent with Xj for all

i, j = 1,2, . . . ,m. Then the cdf FL(·) of the loss function L is continuous except at the point 0. In

general, when computing the sensitivity of VaR or CVaR with respect L, we are interested in the

event that the loss is beyond some large threshold y (which is typically greater than 0), so the

discontinuity at 0 will not cause any problem. Note that if we restrict li to be constant, then L

become a discrete random variable with cdf FL(·) be a step function. Then the sensitivity of the

VaR or the CVaR may become hard to analyze since the perturbation of θ may lead to a dramatic

change or no change of the value of VaR depending on whether the level α (defined later on) is

at an exact probability mass point or not. Interested readers may be referred to Rockafellar and

Uryasev (2002) for representing the CVaR for general loss functions as an expectation of properly

modified tail distribution.

Considering li, i= 1,2, . . . ,m, as continuous random variables, then L is a continuous random

variable except at the point 0, where Pr(L= 0) = Pr (Xi ≥ 0, for all i= 1,2, . . . ,m)> 0. Generally,

when computing the sensitivity of VaR with respect to L, we are interested in the event that the

loss is beyond some large threshold y, which is typically greater than 0.

EC.3.1. The sensitivity of VaR

Let FL(y) = Pr(L ≤ y) be the cdf of L. Define the VaR at level α (α-VaR) of L as vα = inf{y :

FL(y)≥ α}. Then for vα 6= 0, the equality can be achieved with FL(vα) = α. To estimate v′α(θ), we

write FL(vα) = α as FL(vα(θ), θ) = α and take derivative with respect to θ on both sides, which

yields

∂yFL(y, θ)|y=vα(θ) · v′α(θ) + ∂θFL(y, θ)|y=vα(θ) = 0.
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Then,

v′α(θ) =
∂θFL(y, θ)

∂yFL(y, θ)

∣∣∣∣
y=vα(θ)

=
∂θFL(y, θ)

fL(y, θ)

∣∣∣∣
y=vα(θ)

, (EC.6)

where fL(y, θ) denote the pdf of L. Then our goal is to calculate ∂θFL(vα(θ), θ) and fL(vα(θ), θ)

respectively. The numerator on the right-hand-side of Equation (EC.6)

∂θFL(vα(θ), θ) =
d

dθ
E
[
1{L(θ)≤y}

] ∣∣
y=vα(θ)

. (EC.7)

Letting g(L) = 1{L(θ)≤y}, then Equation (EC.7) can be handled by the conditional technique in

Section 2. We just summarize the result as follows,

d

dθ
E
[
1{L(θ)≤y}

] ∣∣∣
y=vα(θ)

=−
m∑
i=1

E
{[

1{L−i+li≤y}−1{L−i≤y}
]
·X ′i(θ) ; Xi = 0

} ∣∣∣
y=vα(θ)

,

where L−i =
∑m

j=1,j 6=i lj ·1{Xj<0}. The denominator on the right-hand-side of Equation (EC.6)

fL(y, θ) = lim
∆y→0

FL(y+ ∆y)−FL(y)

∆y

= lim
∆y→0

E
[
1{L(θ)≤y+∆y}−1{L(θ)≤y}

]
∆y

.

Then, we may choose a proper ∆y to approximate fL(y, θ) at y= vα(θ), which can be viewed as the

kernel method. Another way is to apply the conditional Monte Carlo derived in Fu et al. (2009).

Basically, it requires to find some random variable Y (θ) such that

FL(y, θ) = E[Pr{L(θ)≤ y|Y (θ)}] = E [G(y,Y (θ), θ)] ,

where G(y,Y (θ), θ) is differential w.p.1 with respect to y and

|G(y+ ∆y,Y (θ), θ)−G(y,Y (θ), θ)| ≤K|∆y|, (EC.8)

for some random variable K with E[K]<∞. Then,

fL(y, θ)|y=vα(θ) = E[∂yG(y,Y (θ), θ)]
∣∣
y=vα(θ)

. (EC.9)

The closed-form expression of G may be complicated, but the idea behind is straightforward. By

conditioning on some random variable Y (θ), we can write FL as an expectation of a function of cdf’s

and pdf’s with closed-form. In addition, the condition of (EC.8) can be easily verified after giving

the closed-form of G (which should be satisfied due to the differentiability of FL at y= vα(θ)).

Equations (EC.7) and (EC.9) together provide the estimator v′α(θ) in Equation (EC.6). Now we

derive a general closed-form expression of G given the form of loss function L in our paper. Suppose

we may write Xi = ηi −Ai, where ηi is an idiosyncratic random variable which is independent of
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all other random variables. Let Hi(·) and hi(·) be the cdf and pdf of ηi, respectively. Let Fi(·) be

the cdf of li and F̄i(·) = 1−Fi(·). Then,

FL(y, θ) = E

[
Pr

{
m∑
i=1

li ·1{ηi<Ai} ≤ y
∣∣∣∣A1,A2, . . . ,Am

}]
. (EC.10)

For any y > 0,

Pr

{
m∑
i=1

li ·1{ηi<Ai} ≤ y
∣∣∣∣A1,A2, . . . ,Am

}

= Pr{η1 <A1|A1} ·Pr

{
l1 ≤ y−

m∑
i=2

li ·1{ηi<Ai}
∣∣∣∣A2,A3, . . . ,Am

}

+ Pr{η1 ≥A1|A1} ·Pr

{
m∑
i=2

li ·1{ηi<Ai} ≤ y
∣∣∣∣A2,A3, . . . ,Am

}

= F1(A1) ·E

[
H1

(
y−

m∑
i=2

li ·1{ηi<Ai}

)∣∣∣∣A2,A3, . . . ,Am

]

+ F̄1(A1) ·Pr

{
m∑
i=2

li ·1{ηi<Ai} ≤ y
∣∣∣∣A2,A3, . . . ,Am

}
.

Recursively, we can use the same approach to analyze Pr

{∑m

i=2 li ·1{ηi<Ai} ≤ y
∣∣∣∣A2,A3, . . . ,Am

}
.

Then, after m iterations, we obtain that

Pr

{
m∑
i=1

li ·1{ηi<Ai} ≤ y
∣∣∣∣A1,A2, . . . ,Am

}

=
m∑
i=1

{
Fi(Ai) ·E

[
Hi

(
y−

m∑
j=i+1

lj ·1{ηj<Aj}

)∣∣∣∣Ai+1,Ai+2, . . . ,Am

]
·
i−1∏
j=1

F̄j(Aj)

}

+
m∏
i=1

F̄i(Ai).

By Equation (EC.10),

FL(y) =
m∑
i=1

E

[
Fi(Ai) ·Hi

(
y−

m∑
j=i+1

lj ·1{ηj<Aj}

)
·
i−1∏
j=1

F̄j(Aj)

]
+ E

[
m∏
i=1

F̄i(Ai)

]
.

Differentiating FL(y) with respect to y yields

fL(y) =
m∑
i=1

E

[
Fi(Ai) ·hi

(
y−

m∑
j=i+1

lj ·1{ηj<Aj}

)
·
i−1∏
j=1

F̄j(Aj)

]
.

EC.3.2. The sensitivity of CVaR

According to Acerbi and Tasche (2002), the CVaR is equivalent to the expected shortfall (ES)

when L is a real integrable random variable (i.e., E[|L|]<∞). In addition, L is continuous in the

neighborhood of vα (which is the α-VaR), then CVaR at level α (denoted by α-CVaR) of L is

uα = vα +
1

1−α
E[(L− vα);L≥ vα],
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which is also known as the tail conditional expectation. We are interested to calculate u′α(θ). Note

that Pr{L(θ) = vα(θ)}= 0. If we want to use the Monte Carlo method in this paper, we need to

re-derive p′(θ) in Equation (6) in the paper since g(·) is a function of θ now. Moreover, we define

g(x, θ) = (x− vα(θ)) ·1{x≥vα(θ)}, then ∂θg(x, θ) =−v′α(θ) ·1{x≥vα(θ)} when vα(θ) 6= x. We know that

p(θ) =
∑

s∈S (m)

E

[
g

(∑
i∈s1

li

)]
·E

[∏
i∈s1

1{Xi<0}
∏
i∈s0

1{Xi≥0}

]
.

Then,

p′(θ) =
∑

s∈S (m)

E

[
g′

(∑
i∈s1

li

)]
·E

[∏
i∈s1

1{Xi<0}
∏
i∈s0

1{Xi≥0}

]

+
∑

s∈S (m)

E

[
g

(∑
i∈s1

li

)]
· d
dθ

E

[∏
i∈s1

1{Xi(θ)<0}
∏
i∈s0

1{Xi(θ)≥0}

]
.

=−v′α(θ)
∑

s∈S (m)

E
[
1{∑

i∈s1 li≥vα(θ)}

]
·E

[∏
i∈s1

1{Xi<0}
∏
i∈s0

1{Xi≥0}

]

+
∑

s∈S (m)

E

[
g

(∑
i∈s1

li

)]
· d
dθ

E

[∏
i∈s1

1{Xi(θ)<0}
∏
i∈s0

1{Xi(θ)≥0}

]

=−v′α(θ)E
[
1{∑m

i=1 li1{Xi<0}≥vα(θ)}

]
−

m∑
i=1

E{[g (L−i + li)− g (L−i)] ·X ′i(θ) ; Xi = 0}

=−(1−α)v′α(θ)−
m∑
i=1

E{[g (L−i + li)− g (L−i)] ·X ′i(θ) ; Xi = 0} .

The sensitivity of α-CVaR is

u′α(θ) = v′α(θ) +
1

1−α
· d
dθ

E[(L(θ)− vα(θ));L(θ)≥ vα(θ)]

=
−1

1−α

m∑
i=1

E
{[

(L−i + li) ·1{L−i+li≥vα(θ)}−L−i ·1{L−i≥vα(θ)}
]
·X ′i(θ) ; Xi = 0

}
.

If Assumptions 1–3 in Hong and Liu (2009) hold, then we can directly apply the result in Hong

and Liu (2009) to obtain that

u′α(θ) =
1

1−α
E
[
L′(θ) ·1{L(θ)≥vα(θ)}

]
=

1

1−α
E

[(
m∑
i=1

li ·1{Xi(θ)<0}

)′
·1{L(θ)≥vα(θ)}

]
= 0,

which is obviously wrong. This is because the Assumption 1 of Hong and Liu (2009) fails with

respect the loss function L considered in our paper.
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