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Abstract

In the past several decades, many ranking-and-selection (R&S) procedures have been developed

to select the best simulated system with the largest (or smallest) mean performance measure from

a finite number of alternatives. A major issue to address in these R&S problems is to balance the

trade-off between the effectiveness (i.e., making a correct selection with a high probability) and the

efficiency (i.e., using a small total number of observations). In this paper, we take a frequentist’s

point of view by setting a predetermined probability of correct selection while trying to reduce the

total sample size, that is, to improve the efficiency but also maintain the effectiveness. In particular,

in order to achieve this goal, we investigate combining various variance reduction techniques into

the fully sequential framework, resulting in different R&S procedures with either finite-time or

asymptotic statistical validity. Extensive numerical experiments show great improvement in the

efficiency of our proposed procedures as compared with several existing procedures.

Keywords: ranking and selection; control variates; conditional expectation; poststratified sam-

pling; simulation; variance reduction techniques



1 Introduction

Selecting the best system, one with the largest (or smallest) performance measure from a finite

number of alternatives, is known as a ranking-and-selection (R&S) problem in the simulation lit-

erature. The original work on R&S can be traced back at least to Bechhofer [3] that established

the indifference-zone (IZ) formulation by assuming the difference between the best and second-best

systems is greater than or equal to an IZ parameter. Since then, many procedures have been de-

signed to solve R&S problems, which in general can be classified into two categories: the Bayesian

approach and the frequentist approach. Interested readers may refer to Chick [7] and Kim and

Nelson [23] for a comprehensive review of both the Bayesian and frequentist methods.

For many existing R&S procedures in the literature, a key objective is to demonstrate their

effectiveness (i.e., a high probability of correct selection (PCS)) and efficiency (i.e., a small total

number of simulated observations). For instance, the OCBA (optimal computing budget allocation)

algorithm in Chen et al. [6] and the EVI (expected value of information) procedures in Chick and

Inoue [8, 9], under the Bayesian approach, attempt to allocate a given number of simulation budgets

to maximize the posterior PCS, while fully sequential procedures such as Paulson’s procedure in

Paulson [34] and the KN family procedures in Kim and Nelson [21, 22] under the IZ formulation of

frequentist approach allow for early elimination of inferior systems. All of these approaches show

that they can achieve the objective of either high effectiveness or high efficiency, depending on the

particular problem formulations. It is worth pointing out that common random number (CRN)

techniques have been introduced in EVI and KN procedures to further improve the efficiency.

A correct implementation of CRN would introduce a positive correlation between any pair of

systems, thereby reducing the variance in the difference between two systems. In addition to CRN,

there are various variance reduction techniques (VRTs) developed in the simulation literature that

can directly reduce the variance of each individual system, and therefore lead to an additional

benefit when applied to solve R&S problems. As shown in Nelson and Staum [32], Tsai et al.

[44] and Tsai and Nelson [43], the control variate (CV) technique has been successfully adapted

to R&S procedures to obtain greater statistical efficiency as compared to ordinary sample-mean-

based procedures. In particular, Nelson and Staum [32] proposed a screening and a two-stage

selection procedure that can efficiently employ CV estimators. Tsai et al. [44] derived a combined

approach that uses a CV screening procedure to remove inferior systems in the first stage and then

employs a CV selection procedure to the surviving systems in the second stage. Tsai and Nelson

[43] developed fully sequential selection procedures based on controlled sum (CS) estimators (which

is a variation of CV estimators; see Section 3.1 for more details). In this paper, we consider more

complicated integrated VRTs rather than simple CV methods, and incorporate these VRTs into a
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fully sequential framework under the IZ formulation.

When combining various integrated VRTs in a fully sequential framework, we notice that some

of the existing VRTs may not always be applicable as we investigate the raw sum of a system’s

outputs. Take the poststratified sampling (PS) method for example, where some strata may be

empty (i.e., none of the simulated observations falls in a particular stratum) and the total sample

size is small, which makes the PS estimator unsuitable at the beginning. However, as the sample

size increases, the possibility of empty strata decreases. This motivates us to study the asymptotic

properties of the newly designed, fully sequential procedures in a limiting regime in which the

IZ parameter goes to zero. It is often useful to combine the CV and conditional expectation

(CE) techniques (see Section 3.2 for more details). As illustrated in Minh [30], the CE estimator

may not be applicable in some scenarios. Then, the application of partial conditional expectation

(PCE) estimators seems more attractive and is thus more widely used. Roughly speaking, as we

simulate a sequence of observations from one system, some of them can be applied with the CE

technique and thus contribute to a CV+CE combined estimator, while some may not and thus

contribute only to a CV estimator. Then, the PCE technique allows the use of both estimators in

the elimination process, resulting an additional reduction in the total sample size in the procedure.

The contributions of this paper are two-fold: (1) derive closed-form expressions of the variances of

CV+CE combined and CV+PS combined estimators, respectively, and provide analytical results

that can evaluate or quantify the efficiency improvement compared with the ordinary CV estimator;

(2) based on that, design fully sequential procedures that can exploit the benefits of adopting the

integrated VRTs into sequential R&S settings.

1.1 Literature Review

Our work is mainly related to two streams of simulation literature. The first concerns integrated

VRT strategies in the simulation literature. Grant [17] considered the pairwise combinations of

antithetic variates (AV), CV and PS in a general context, in which they found that AV+PS is

infeasible theoretically, and CV+PS outperforms CV+AV based on the simulation experimental

results for the stochastic shortest route problem. Their empirical results also indicated that the

combined CV+PS technique works better than either CV or PS used individually. The combined

scheme with CV and stratified sampling (SS) was studied by L’Ecuyer and Buist [28] within the

content of a call center simulation model, where stratification was applied to uniform random num-

bers driving the simulation. Sabuncuoglu et al. [39] investigated the experimental performance of

individual use of different VRTs, including CV, AV, PS and Latin hypercube sampling (LHS), as

well as the combined CV+AV and CV+LHS schemes. They considered three classical simulation

models, i.e., M/M/1 queueing, a serial production line, and (s, S) inventory control systems, and
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the experimental results (for the single use of VRT) showed that CV exhibits the best performance

followed by PS. They also found that the output techniques (i.e., CV and PS) are superior to

the input techniques (i.e., AV and LHS), especially when the systems under examination become

more complex. A framework for integrated use of different VRTs, including the input techniques

of AV and LHS as well as the output techniques of CV and CE, was established in Avramidis

and Wilson [2], providing sufficient conditions under which the combined schemes are superior to

their constituent VRT. These individual VRTs and integrated variance reduction strategies were

implemented and compared via simulation experiments on stochastic activity networks, and the

experimental results also revealed that the CE technique delivers the best efficiency among the

individual VRTs they examined. The CV+CE scheme was investigated by Ross and Lin [37] to

estimate the expected delay in an M/M/1 queue. These CV+CE schemes in both of the afore-

mentioned papers are adopted in our current work, which can be considered as a natural estimator

corresponding to our CV+CE Combined Models I and II (see Sections 3.2.1 and 3.2.2). It is worth-

while noting that most of the existing works evaluated the performance of each combined method

in specific stochastic systems and drew conclusions only based on the simulation experiments.

The second stream of simulation literature concerns fully sequential R&S procedures under

IZ formulation. As mentioned before, the IZ formulation was first proposed by Bechhofer [3]

(providing a single-stage procedure with a fixed sample size) and later incorporated into the fully

sequential scheme by Paulson [34]. Kim and Nelson [21] generalized Paulson’s result to unknown

and unequal variance cases with a tight bound based on the results of Fabian [12]. Most fully

sequential procedures, e.g., Paulson’s procedure in Paulson [34] and the KN procedure in Kim and

Nelson [21], take a single observation from each system still in contention at each stage (which is

called the vector-at-a-time (VT) sampling rule in Jennison et al. [20] or the round-robin rule in Luo

et al. [29]), and eliminate systems whenever they are statistically inferior. It has been shown that,

in general, early elimination due to the fully sequential nature of simulations will greatly reduce the

total computational effort compared with multi-stage procedures, such as the single-stage procedure

in Bechhofer [3] and the two-stage procedure in Rinott [35]. More sophisticated sampling rules other

than VT have demonstrated additional statistical efficiency, such as the asymptotic sampling rules

in Jennison et al. [20] and the variance-dependent rules in Hong [19]. However, to evaluate the

advantage of integrating various VRTs and to make a fair comparison with KN-like procedures, we

focus on the VT sampling rules in this paper.

In addition to a sequence of papers that considered CV techniques in R&S procedures (e.g.,

Nelson and Staum [32], Tsai and Nelson [43] and Tsai et al. [44]), there is one more related work

of Tsai and Kuo [42], which further exploited models combining CV and input techniques (i.e.,

CV+AV and CV+LHS). A summary of existing research work on VRTs is given in Table 1, which
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Table 1: Summary of the research work on VRTs.

Papers Contributions VRTs used Problems or procedures studied
Grant [17] Comparison CV+PS, CV+AV Stochastic routing problem
L’Ecuyer and Buist [28] Comparison CV+SS Call center system
Sabuncuoglu et al. [39] Comparison CV+AV, CV+LHS M/M/1 queue, production line,

and inventory system
Ross and Lin [37] Comparison CV+CE M/M/1 queue
Avramidis and Wilson [2] Comparison Combinations among Stochastic activity network

AV, LHS, CV and CE
Nelson and Staum [32] R&S CV Screening and two-stage selection
Tsai et al. [44] R&S CV Combined screening and selection
Tsai and Nelson [43] R&S CV Fully sequential procedure
Tsai and Kuo [42] R&S CV+AV, CV+LHS Screening, two-stage,

and fully sequential procedures
Current work R&S CV+CE, CV+PCE, Fully sequential procedures

and CV+PS

includes (i) comparative studies to test some of the VRTs under various experimental conditions;

and (ii) specifically developed R&S procedures to exploit VRTs. Different from Tsai and Kuo [42], in

this paper, we consider combined models of CV with output techniques (i.e., CV+CE and CV+PS),

and design new fully sequential procedures when combined models may sometimes not be applicable

(which motivates us to use CV+PCE). This research work is also motivated by the observation

that output techniques can often obtain more statistical efficiency than input techniques, as shown

in the related literature (e.g., Avramidis and Wilson [2], Grant [17], and Sabuncuoglu et al. [39]).

We also note that the aforementioned CV+PS scheme in the literature assumes a fixed sample size

and requires implementing the regression for each stratum. It is therefore not appropriate for direct

use in fully sequential procedures (see Section 4.2 for more arguments). Such difficulties drive us to

study statistical effectiveness and efficiency in an asymptotic regime in addition to the finite-time

properties.

The rest of this article is organized as follows: In Section 2, we develop a general fully sequential

procedure (FSP) without introducing the detailed notions of VRTs. A brief review of individual

VRTs and the derivation of the combined models, especially CV+CE, are provided in Section 3.

The details of the CV+PS combined model and its corresponding FSP are then given in Section 4.

We also provide an extensive numerical study and a realistic illustration in Sections 5 and 6, respec-

tively, and make some concluding remarks in Section 7. The proof, the details of the benchmark

procedures, and the numerical results for FSP with CV+CE models are contained in the Appendix.
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2 Overview of the Proposed Fully Sequential Procedure

Suppose that we intend to select the best system with the largest mean performance measure among

a set of k system designs with unknown mean θi, i = 1, 2, . . . , k. Under the IZ formulation, we

further assume that θ1 − δ ≥ θ2 ≥ . . . ≥ θk, where δ > 0 is the IZ parameter representing the

practically significant difference in the expected performance that is worth detecting. The original

unknown variance of system i is denoted by σ2
i , which can be reduced to u2

i after successfully

applying the CV technique, for instance, as shown in Tsai and Nelson [43]. In this paper, we

consider the application of more sophisticated integrated VRTs to further reduce the variance to

v2
i , where v2

i < u2
i < σ2

i , i = 1, 2, . . . , k. Then, an FSP with finite-sample statistical validity that can

exploit the aforementioned integrated VRTs, especially in the case of various CV+CE combined

models, can be designed in a similar fashion as in Tsai and Nelson [43], which is presented in

Appendix B.1.

Meanwhile, it is worthwhile noticing that the implementation of integrated VRTs is not always

applicable as the implementation of CV. We have to admit that the uncertainty of whether being

able to apply integrated VRTs or not could cause potential difficulties as we analyze the finite-time

statistical validity, which drives us to study the asymptotic properties in the regime where the

IZ parameter δ → 0. This asymptotic regime δ → 0 was also used by Kim and Nelson [22] in

analyzing steady-state simulation observations and by Luo et al. [29] for designing fully sequential

procedures in parallel computing environments. In the following subsection we introduce a new

FSP that can employ CV+PCE estimators (the details for which are discussed in Section 3) and

feature the variance updating mechanism. The statistical validity of the proposed procedure in the

asymptotic regime (i.e., δ → 0) is shown in Appendix A.

2.1 Fully Sequential Procedure with CV+PCE

A major issue one faces when using the CE technique is that sometimes it is difficult to find a

conditional variable for which the CE estimators can be obtained for all simulation replications.

The following are examples where some observations from one system may not be applied with the

CE technique: (a) we want to estimate the average annual salary of a country, and know exactly

the average salary of all government officers (but not the rest of the population); (b) we want

to estimate the expected waiting time for the G/G/1 queue with the first-in-first-out discipline as

employing the Lindley equation. Minh [30] illustrated that the CE technique can only be applicable

when the difference between the service time and interarrival time of the nth customer is greater

than or equal to zero; (c) we want to estimate the expected waiting time for a queue where there

are two classes of customers with different service time distributions (e.g., exponential and normal).
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We use the number of customers waiting ahead in line when each customer just enters the system

as the conditional variable. The CE technique can only be applied when the service time of the

customer in process follows an exponential distribution (see Section 6.2 for more details); (d) we

want to estimate the expected time to failure of a complex system that consists of several dependent

components with various degradation mechanisms. The application of CE seems possible only when

the component degradation is not observed or not evident in some system scenarios (Zille et al.

[47]).

We propose using the CV+PCE technique which employs a CV+CE combined estimator when

some replications from one system can be applied with the CE technique, while uses a pure CV

estimator in some replications when the CE technique cannot be applied. For notational simplicity,

let Xij denote the original jth observation taken from system i, whose mean and variance are

θi and σ2
i , for i = 1, 2, . . . , k. We then check whether the integrated VRT can be applied to

that observation. If it can, then we obtain an outcome, denoted as Vi`, the `th observation after

applying the integrated VRT (e.g., CV+CE). Otherwise, we obtain an outcome, denoted as Uij ,

the jth observation after simply applying the CV technique. Both Vi` and Uij are assumed to have

the same mean θi, but different variances, v2
i and u2

i , respectively. Under some conditions (which

are discussed in Section 3.2), we can make sure that v2
i < u2

i holds for all i = 1, 2, . . . , k.

In designing fully sequential procedures, we assume that we take only one observation for each

system still in contention at each stage. At stage r, let mir and nir denote the total number

of observations obtained by CV and CV+CE, respectively. Then, mir and nir are non-decreasing

random variables as r increases, and mir+nir = r. Note that the various VRTs will intend to reduce

the variability of outputs without affecting the mean performance. To fully take the advantage of

this, we continue updating the variance at each stage.

Let Ui(·), U2
i (·), Vi(·) and V 2

i (·) be defined as follows,

Ui(mir) =
mir∑

j=1

Uij , and U2
i (mir) =

mir∑

j=1

U2
ij , (1)

Vi(nir) =
nir∑

`=1

Vi`, and V 2
i (nir) =

nir∑

`=1

V 2
i`. (2)

Then the unbiased sample variance estimators when mir ≥ 2 and nir ≥ 2 are

S2
CV(i, r) =

1
mir − 1

[
U2

i (mir)− 1
mir

(Ui(mir))
2

]
, (3)

S2
CV+CE(i, r) =

1
nir − 1

[
V 2

i (nir)− 1
nir

(Vi(nir))
2

]
. (4)

When mir = 0, 1 or nir = 0, 1, we may artificially define S2
CV(i, r) = 0 or S2

CV+CE(i, r) = 0.
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This should be fine in the asymptotic regime where we make the assumption that mir → ∞ and

nir →∞ as r →∞ (see Theorem 1 for a rigorous statement of the asymptotic regime). In Step 0

of Procedure 1, we let the first-stage sample size n0 ≥ 3 to avoid a trivial case in which we cannot

calculate the sample variance.

We are now ready to present the procedure. For simplicity of presentation, we here omit the

detailed parameter settings, e.g., estimating the unknown multiplier parameter in a regression

model, which is further discussed in Sections 3.2 and 5.2.1.

Procedure 1 (Fully Sequential Procedure with CV+PCE).

Step 0. Setup: Select confidence level 1/k < 1 − α < 1, IZ parameter δ > 0, and the first-stage

sample size n0 ≥ 3. Let a = − log [2α/(k − 1)].

Step 1. Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention. Let r be

the observation counter. Set r = n0. Take r samples from system i, resulting mir samples

of {Uij , j = 1, . . . , mir} and nir samples of {Vi`, ` = 1, . . . , nir}, where mir + nir = r. Let

Ui(mir) = U2
i (mir) = 0 and Vi(nir) = V 2

i (nir) = 0. If mir > 0 or nir > 0, then update

Ui(mir), U2
i (mir), Vi(nir) and V 2

i (nir) according to Equations (1) and (2).

Let S2
CV(i, r) = 0 and S2

CV+CE(i, r) = 0. If mir ≥ 2 or nir ≥ 2, then update S2
CV(i, r) or

S2
CV+CE(i, r) according to Equations (3) and (4).

Step 2. Elimination: For any pair of systems i and h in I, i 6= h, compute

σ̂2
ih(r) =

1
r

[
mirS

2
CV(i, r) + nirS

2
CV+CE(i, r) + mhrS

2
CV(h, r) + nhrS

2
CV+CE(h, r)

]
, (5)

Zih(r) =
1
r

[Ui(mir) + Vi(nir)− Uh(mhr)− Vh(nhr)] . (6)

Set Iold = I. Let

I = Iold \
{

i ∈ Iold : Zih(r) < min
{

0,−aσ̂2
ih(r)
δr

+
δ

2

}
for some h ∈ Iold and h 6= i

}
,

where A \B = {x : x ∈ A and x /∈ B}.

Step 3. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as

the best. Otherwise, let r = r + 1 and take the rth sample from system i ∈ I. If the

rth sample is from Ui·, then update mir = mi,r−1 + 1, Ui(mir) = Ui(mir − 1) + Ui,mir and

U2
i (mir) = U2

i (mir − 1) + U2
i,mir

. If the rth sample is from Vi·, then update nir = ni,r−1 + 1,

Vi(nir) = Vi(nir − 1) + Vi,nir and V 2
i (nir) = V 2

i (nir − 1) + V 2
i,nir

. Also update S2
CV(i, r) or

S2
CV+CE(i, r) according to Equations (3) or (4). Then go to Step 2.
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Even though Procedure 1 is designed for integrating the CV and PCE techniques, it can be easily

generalized to employ other combined VRT models, with specifying other parameters in Step 0 and

Step 1 as well as the particular variance and mean-difference estimators in Equations (5) and (6)

in Step 2. For instance, we consider three different CV+CE combined models in Section 3.2,

which can also be applied in the same fashion as in Procedure 1. We now state the main theorem

as follows.

Theorem 1. Let Uij and Vi` denote the jth and `th observations from system i, i = 1, 2, . . . , k,

that being applied CV and CV+CE techniques, respectively. We assume that systems i and h are

independently simulated for any i 6= h. Let θi = E[Uij ] = E[Vi`] be the unknown mean of system i

and u2
i = Var[Uij ] and v2

i = Var[Vi`] be the unknown but finite variances with v2
i < u2

i . Moreover, we

assume that Uij and Vi` are independent of each other for any j and `. Without loss of generality,

we let θ1−δ ≥ θ2 ≥ . . . ≥ θk, where δ is the IZ parameter. Let the first-stage sample size n0 = n0(δ)

be a function of δ such that n0 → ∞ and δ2n0 → 0 as δ → 0. Let mir and nir denote the sample

size of {Uij , j = 1, . . . , mir} and {Vi`, ` = 1, . . . , nir} at stage r, which is also a function of δ. We

assume that mir → ∞ and nir → ∞, and mir/r → pi and nir/r → 1 − pi, where pi is some

unknown constant in [0, 1], as δ → 0 (implying that r →∞). Then, as δ → 0, Procedure 1 selects

system 1 as the best with a probability at least 1− α.

The proof follows a similar argument as in Luo et al. [29]. The main step is to construct a

modified stochastic process of Z̃ih(·) and show that it converges to a Brownian motion process, for

which the detailed derivation is presented in Appendix A.

3 VRTs and Combined Models of CV and CE

The three classes of VRTs considered in this paper are control variate (CV), conditional expectation

(CE) and poststratified sampling (PS) techniques. They all share the same feature where one or

multiple auxiliary random variables must be identified before implementation. CV is generally

applicable and can achieve efficiency gains by exploiting the intrinsic linear relationship between

the output and the selected input random variables (called control variables) whose expectations

are known. The choice of appropriate control variables is essential to realizing the benefits of

variance reduction. The idea of CE is to replace the basic estimator by an expectation conditioning

on a concomitant random variable (called a conditional variable) that remains available during the

course of the simulation. Although the application of CE is problem-dependent, it can guarantee

the effectiveness of variance reduction if implemented. When employing the PS technique, instead

of sampling conditionally from the specified stratum, we simply perform ordinary independent

sampling and then classify the observations into the appropriate stratum defined in terms of an

8



auxiliary random variable (called a stratification variable) whose exact distribution is known. The

stratified sampling estimator is employed to eliminate sampling variability across strata (without

affecting the intra-stratum variability), thus delivering a smaller variance compared to the ordinary

sample mean. In this section, we mainly focus on the CV, CE techniques and their combined

models. The results of combining CV and PS are deferred to Section 4.

Let Yij represent the simulation output from the jth replication of system i, for i = 1, 2, . . . , k.

The ordinary sample-mean-based R&S procedures assume that

Yij = θi + ηij ,

where ηij is the error term, which is assumed to be an independently and identically distributed

(i.i.d.) N(0, σ2
i ) random variables with σ2

i unknown for all i and j. The standard estimator of θi

across n simulation replications is the sample mean

Ȳi(n) =
1
n

n∑

j=1

Yij ,

which is unbiased and has the variance σ2
i /n.

3.1 Control Variates and Conditional Expectations

We first review the linear CV model (referred to as Model 0), and the following description is

primarily based on Tsai and Nelson [43]. Let Yij and Cij represent the simulation outputs and

functions of inputs, respectively, from the jth replication of system i for i = 1, 2, . . . , k. Suppose

that the intrinsic relationship between them can be described by the following linear model:

Yij = θi + (Cij − µi)
T βi + εij ,

where θi is the unknown true mean of Yij . The qi × 1 vector Cij is called the control variable

and is assumed to be multivariate normal with a known mean vector µi. The multiplier βi is a

qi×1 vector of unknown constants, and εij is the error term that is assumed to be an i.i.d. N(0, τ2
i )

random variable. The Yij are i.i.d. N(θi, σ
2
i ) random variables with both θi and σ2

i unknown and

perhaps unequal.

We apply a linear regression analysis on Model 0 to produce the following linear CV point

estimator of θi:

θ̂CV(i, n) = Ȳi(n)− (
C̄i(n)− µi

)T
β̂i(n),
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where

Ȳi(n) =
1
n

n∑

j=1

Yij and C̄i(n) =
1
n

n∑

j=1

Cij ,

which represent the sample means of the outputs and control variables, and

β̂i(n) = S−1
Ci

(n)SCiYi(n) (7)

where SCi(n) is the sample variance-covariance matrix of Cij , and SCiYi(n) is the sample covariance

vector between Cij and Yij . The expectation and variance of θ̂CV(i, n) can be shown as follows:

E[θ̂CV(i, n)] = θi and Var[θ̂CV(i, n)] =
(

n− 2
n− qi − 2

)
τ2
i

n
, (8)

where τ2
i = (1−R2

i )σ
2
i and R2

i is the square of the multiple correlation coefficient between Yij and

Cij . The term (n − 2)/(n − qi − 2) is known as the loss ratio, which quantifies the efficiency loss

due to the estimation of the unknown multiplier βi.

The standard CV estimator is statistically more efficient than the ordinary sample mean, but it

also requires more computational effort (i.e., the implementation of a linear regression). Tsai and

Nelson [43] proposed a variation of CV estimators, which we call controlled sum (CS) estimators,

that can be appropriately incorporated into an FSP. We need to collect preliminary-stage samples

(Yij ,Cij), j = 1, 2, . . . , m0 to compute β̂i(m0) for each system i = 1, 2, . . . , k (based on Equation

(7)). For any non-negative integers a, b, with b > a + 1, and qi × 1 vector β̂i(m0) as just defined,

the controlled sample mean from the (a + 1)st sample to the bth sample is defined as

Ȳi [a, b] =
1

b− a

b∑

j=a+1

[
Yij − (Cij − µi)

T β̂i(m0)
]
.

For all i 6= h, define the controlled sample variance, S2
ih [a, b], as

1
b− a− 1

b∑

j=a+1

[
Yij − (Cij − µi)

T β̂i(m0)− Yhj + (Chj − µh)T β̂h(m0)− Ȳi[a, b] + Ȳh[a, b]
]2

. (9)

Suppose we also specify a first-stage sample size n0. We then take additional observations (Yij ,Cij), j =

m0 + 1,m0 + 2, . . . , m0 + n0 from which the controlled sample mean Ȳi[m0,m0 + n0] and the con-

trolled sample variance S2
ih[m0,m0 + n0] can be derived. If the linear CV model holds then it can
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be shown that

E
[
Ȳi[m0,m0 + n0]

]
= θi and Var

[
Ȳi[m0,m0 + n0]

]
=

(
m0 − 2

m0 − qi − 2

)
τ2
i

n0
. (10)

See Tsai and Nelson [43] for some guidelines by which to choose an appropriate value of m0.

Besides the CV technique, in some simulation models, we may be able to exploit their special

problem structure or properties, and then identify an auxiliary random vector (or a random scalar)

Xij , which is called the conditional variable, such that the conditional expectation E[Yij |Xij ] can

possibly be evaluated analytically or numerically for every possible value of Xij . Then, without

considering CV technique, the standard CE estimator of θi across n simulation replications is the

sample mean

θ̂CE(i, n) =
1
n

n∑

j=1

E[Yij |Xij ]

for i = 1, 2, . . . , k, which can be shown to be unbiased and has the variance Var[θ̂CE(i, n)] =

n−1
(
σ2

i − E[Var(Yij |Xij)]
)

(see p.106 and p.118 of Ross [36]). We can immediately see that variance

reduction can be achieved (i.e., Var[θ̂CE(i, n)] ≤ Var[Ȳi(n)]) because E[Var(Yij |Xij)] ≥ 0.

3.2 Combined Models of CV and CE

When both the control variates and conditional expectation techniques are applicable in the sim-

ulation experiment, we expect that additional variance reduction can be achieved. Specifically,

we consider the following three combined schemes: (I) replacing the simulation output and con-

trol variables with their conditional expectations, E[Yij |Xij ] and E[Cij |Xij ], (II) using only the

conditional expectation of the simulation output, E[Yij |Xij ], and (III) using only the conditional

expectation of the control variables, E[Cij |Xij ].

Although these combined models might only be applicable to specific problems or scenarios, in

the following subsections, we derive the analytical results to identify the conditions by which each

model can outperform the others (as well as a pure CV or CE model). To simplify the analytical

comparison between different combined models, we may require the assumption of multivariate

normality among the output and input variables (or their functions). This might be reasonable

because in a simulation experiment we collect observations across multiple replications and then

take average of them, which implies that a multivariate version of the central limit theorem can

be applied (Nelson [31], p.231). It should also be noted that in subsections 3.2.1–3.2.3, we assume

that the conditional expectations E[Yij |Xij ] and E[Cij |Xij ] can be obtained analytically for every

possible value of Xij . Then, a statistically valid FSP that can efficiently employ these CV+CE

combined models can be designed in a similar fashion as in Tsai and Kuo [42] and Tsai and Nelson

11



[43], which is presented in Appendix B.1. As discussed in Section 2.1, this assumption can be

relaxed to make the combined models more widely applicable since it may not be possible to apply

the CE technique in some simulation replications.

3.2.1 CV+CE Combined Model I

This subsection presents a model for combining CV and CE in such a way that both the conditional

expectation of outputs (i.e., E[Yij |Xij ]) and control variables (i.e., E[Cij |Xij ]) can be evaluated

either analytically or numerically. The Combined Model I can be described as follows:

For each system i = 1, 2, . . . k,

E[Yij |Xij ] = θi + (E[Cij |Xij ]− µi)
T β

(1)
i + ε

(1)
ij .

The distributions and relationship we assume for the conditional expectation of outputs and controls

are similar to those of Model 0. We then apply a linear regression to provide the point estimator

of θi that can exploit CV and CE:

θ̂
(1)

CV+CE(i, n) = Ȳ
(1)
i (n)−

(
C̄(1)

i (n)− µi

)T
β̂

(1)

i (n) (11)

where

Ȳ
(1)
i (n) =

1
n

n∑

j=1

E[Yij |Xij ], C̄(1)
i (n) =

1
n

n∑

j=1

E[Cij |Xij ] and β̂
(1)

i (n) = S−1

C̄
(1)
i

(n)S
C̄

(1)
i Ȳ

(1)
i

(n) (12)

where S−1

C̄
(1)
i

(n) is the sample variance-covariance matrix of E[Cij |Xij ] and S
C̄

(1)
i Ȳ

(1)
i

(n) is the sample

covariance vector between E[Cij |Xij ] and E[Yij |Xij ]. We can show that θ̂
(1)

CV+CE(i, n) is an unbiased

estimator of θi and its variance is

Var
[
θ̂

(1)
CV+CE(i, n)

]
=

(
n− 2

n− qi − 2

)(
1−R′2

i

) Var [E [Yij |Xij ]]
n

(13)

=
(

n− 2
n− qi − 2

)(
1−R′2

i

) Var[Yij ]×R2
Y,X

n
(14)

where R′2
i is the square of the multiple correlation coefficient between E[Yij |Xij ] and E[Cij |Xij ],

and R2
Y,X is the square of the multiple correlation coefficient between Yij and Xij . Equation (13)

follows because we assume that Combined Model I holds. Equation (14) follows only when we also

assume that the joint distribution of {Yij ,XT
ij} is multivariate normal, in which case we can obtain

Var [E [Yij |Xij ]] = Var[Yij ]×R2
Y,X. In addition, if we also assume that Model 0 holds and compare

Equation (14) with the variance term of Equation (8), then we can obtain Var
[
θ̂

(1)
CV+CE(i, n)

]
≤

12



Var
[
θ̂CV(i, n)

]
as long as the following condition is satisfied:

R2
Y,X

(
1−R′2

i

) ≤ 1−R2
Y,C.

This implies that we prefer using a set of conditional variables that has a small correlation with

the simulation output Y . As expected, we also want to obtain a significant correlation between the

two conditional expectation terms of Combined Model I. Avramidis and Wilson [2] examined the

efficiency of Combined Model I in the experiments on stochastic activity networks and showed that

θ̂
(1)

CV+CE(i, n) asymptotically dominates θ̂CV(i, n) in terms of estimator variance under some spe-

cific assumptions. They considered the effect of variance reduction and did not apply the combined

model in a fully sequential selection procedure. By contrast, in the following subsection, we demon-

strate that in the scenario of finite samples, Combined Model I is superior to Combined Model II

in terms of statistical efficiency (through an analytical comparison), and then show that Combined

Model II is very likely to work better than Model 0 (through a simple numerical example). In this

way, we can indirectly show that Combined Model I should be superior to Model 0. Furthermore,

following similar derivations as in Theorem 3 of Avramidis and Wilson [2] (i.e., directly comparing

Equation (13) with Var
[
θ̂CE(i, n)

]
), we can obtain Var

[
θ̂

(1)
CV+CE(i, n)

]
≤ Var

[
θ̂CE(i, n)

]
as long as

the sample size n is not too small (i.e., n ≥ qi/R′2
i +2). It should also be noted that assuming that

the joint distribution of {Yij ,CT
ij ,X

T
ij} is nonsingular multivariate normal implies that {Yij ,CT

ij}
(for Model 0 to hold), {Yij ,XT

ij} (for Equation (14) to hold), and {E[Yij |Xij ], E[Cij |Xij ]T } (for

Combined Model I to hold) are all multivariate normally distributed (see Theorems 3.3.1 and 3.3.4

of Tong [41]).

3.2.2 CV+CE Combined Model II

Since the application of CE is problem-dependent, in some cases we may not be able to find an

appropriate conditional variable Xij that allows taking expectation for both the output and control

variables. Therefore, in this subsection we introduce another combined model in which only the

conditional expectation of the outputs can be evaluated analytically. The Combined Model II can

be described as follows:

For each system i = 1, 2, . . . k,

E [Yij |Xij ] = θi + (Cij − µi)
T β

(2)
i + ε

(2)
ij .

The distributions and relationships we assume for E [Yij |Xij ], Cij , and ε
(2)
ij are similar to those of

Combined Model I. Based on Combined Model II, the point estimator θ̂
(2)

CV+CE(i, n) can be defined

in a similar fashion as in Equation (11). We can also justify that θ̂
(2)

CV+CE(i, n) is unbiased and its
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variance is

Var
[
θ̂

(2)
CV+CE(i, n)

]
=

(
n− 2

n− qi − 2

) (
1−R2

E[Y |X],C

) Var [E [Yij |Xij ]]
n

(15)

=
(

n− 2
n− qi − 2

) (
1−R2

E[Y |X],C

) Var[Yij ]×R2
Y,X

n
. (16)

Similar to the previous model, Equation (15) follows because we assume that Combined Model II

holds. Equation (16) holds only when we also assume that the joint distribution of {Yij ,XT
ij} is

multivariate normal. We now proceed to compare the statistical efficiency of θ̂
(2)

CV+CE(i, n) with

that of θ̂CV(i, n) and θ̂
(1)

CV+CE(i, n). For the convenience of illustration, let us assume that the

conditional variable Xij is a scalar (instead of a vector). Since E[Yij |Xij ] is a linear function of Xij

(when assuming that {Yij , Xij} is bivariate normally distributed), Equation (16) can be simplified

as follows (
n− 2

n− qi − 2

) (
1−R2

X,C

) Var[Yij ]×R2
Y,X

n
.

Similar to the previous derivation, if we also assume that Model 0 holds, then we can obtain

Var
[
θ̂

(2)
CV+CE(i, n)

]
≤ Var

[
θ̂CV(i, n)

]
as long as the following condition is satisfied:

R2
Y,X

(
1−R2

X,C

) ≤ 1−R2
Y,C. (17)

The R2
Y,X term represents the effect of applying CE to the output, and the R2

X,C term represents

the effect of using CV to explain the variability of outputs. This derivation implies that we should

choose a conditional variable that has a small correlation with the output, but is strongly correlated

with the vector of the control variables. We assume qi = 1 to simplify the following analysis.

Langford et al. [26] derived a theoretically valid inequality representing the lower and upper bound

of R2
Y,C for any general distribution (when given a specified value of R2

Y,X and R2
X,C).1 However,

we then find that these bounds might be too conservative to provide conclusive results. Instead,

we simply implement simple numerical experiments to check whether the condition (17) can easily

hold or not. In each trial, we generate 300 observations of multivariate normal random vector

{Y, X, C} that conform to the pre-specified settings of R2
Y,X and R2

X,C . We first sample X ∼
N(0, 1) and then, based on this, generate bivariate normal random vector {Y, X} and {X, C}
with zero mean and unit variance by the linear transformation of i.i.d. normal random variables

(see Section 2.3 of Chapter 11 of Devroye [11]). Table 2 then lists the minimum, average, and
1The inequality is given as follows:

RY,XRX,C −
q

(1−R2
Y,X)(1−R2

X,C) ≤ RY,C ≤ RY,XRX,C +
q

(1−R2
Y,X)(1−R2

X,C).
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Table 2: Minimum, average, and maximum values of the estimated R2
Y,C among 100 trials.

R2
X,C = 0.1 R2

X,C = 0.3 R2
X,C = 0.5 R2

X,C = 0.7 R2
X,C = 0.9

R2
Y,X min avg max min avg max min avg max min avg max min avg max
0.1 0 0.01 0.06 0 0.03 0.09 0.01 0.05 0.12 0.02 0.07 0.15 0.03 0.09 0.19
0.3 0 0.03 0.11 0.04 0.09 0.18 0.08 0.15 0.24 0.13 0.21 0.31 0.18 0.27 0.38
0.5 0.01 0.05 0.14 0.08 0.15 0.26 0.16 0.25 0.35 0.25 0.35 0.45 0.35 0.45 0.55
0.7 0.02 0.07 0.16 0.12 0.21 0.32 0.25 0.35 0.46 0.39 0.49 0.58 0.54 0.63 0.71
0.9 0.03 0.09 0.19 0.18 0.27 0.38 0.35 0.45 0.54 0.55 0.63 0.70 0.76 0.81 0.85

maximum of the estimated R2
Y,C among 100 trials. We can see that the condition (17) can be

satisfied in almost all scenarios, except for the extreme cases when we look at the maximum

R2
Y,C (among the 100 trials) with the setting of R2

Y,X = 0.9 and R2
X,C = 0.1 or 0.3. Even under

these worst cases, the efficiency loss for employing Combined Model II is not significant (i.e., the

ratio between R2
Y,X(1 − R2

X,C) and (1 − R2
Y,C) is very close to one). We next compare Combined

Model II with Combined Model I. To simplify the illustration, we also assume that the conditional

variable is a scalar, qi = 1 and {Yij , Xij} is bivariate normally distributed. We can then have

R′2
i = R2

X,E[C|X] and R2
E[Y |X],C = R2

X,C because E[Yij |Xij ] is a linear function of Xij . Recall

that R2
X,E[C|X] = Cov2

[X,E[C|X]]

Var[X]·Var[E[C|X]]
and R2

X,C = Cov2
[X,C]

Var[X]·Var[C]
. We can immediately see that

R2
X,E[C|X] ≥ R2

X,C because Cov [X, C] = Cov [X,E[C|X]] (see Chapter 4 of Casella and Berger [5])

and Var [E[C|X]] ≤ Var[C] (a direct result when using conditional expectation). As a consequence,

we can have Var
[
θ̂

(1)
CV+CE(i, n)

]
≤ Var

[
θ̂

(2)
CV+CE(i, n)

]
when comparing Equation (14) with Equation

(16).

3.2.3 CV+CE Combined Model III

The other combined model is used to obtain the conditional expectation of the control variables,

which can be described as follows (denoted as Combined Model III):

For each system i = 1, 2, . . . k,

Yij = θi + (E[Cij |Xij ]− µi)
T β

(3)
i + ε

(3)
ij .

Similar to the previous derivation, a regression analysis can be applied to this model to yield the

point estimator θ̂
(3)

CV+CE(i, n). Assuming that the Combined Model III holds, we can justify that
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θ̂
(3)

CV+CE(i, n) is unbiased and its variance is

Var
[
θ̂

(3)
CV+CE(i, n)

]
=

(
n− 2

n− qi − 2

) (
1−R2

Y, E[C|X]

) Var [Yij ]
n

(18)

=
(

n− 2
n− qi − 2

) (
1−R2

Y,X

) Var[Yij ]
n

. (19)

Equation (18) follows because we assume that Combined Model III holds. Equation (19) holds

because E [C|X] becomes a linear function of X when we also assume that the joint distribution of

{CT
ij ,X

T
ij} is multivariate normal (see Theorem 3.3.4 of Tong [41]). As a consequence, we can obtain

Var
[
θ̂

(3)
CV+CE(i, n)

]
≤ Var

[
θ̂CV(i, n)

]
as long as the condition is satisfied: R2

Y,X ≥ R2
Y,C. However,

this condition might not be satisfied in general because we always prefer to choose control variables

that have a strong linear association with the outputs when considering Model 0. It should be

noted that any input random variables or variables that are generated by the simulation with

known expectation can be chosen as control variables.

4 Control Variates and Poststratified Sampling (CV+PS)

We start by introducing the concept of stratified sampling (SS), in which we discover the difficulty

related to the implementation into the fully sequential R&S framework, and therefore it motivates

us to consider the poststratified sampling (PS) technique. The general idea of SS is to divide

the sample space into L disjoint strata, and then within each stratum simple random sampling is

applied (with a sample size determined a priori). Theoretically, the efficiency improvement of SS

tends to increase as the number of strata increases. We need to identify a stratification variable

whose distribution is known exactly and let Dij denote its value for the jth replication of system i.

The stratified estimator of θi can be obtained by computing the summation (over all L strata) of

the product between the probability that the variable Dij belongs to an individual stratum and its

corresponding sample mean of Yij .

Before the implementation of SS technique, we need to decide how to construct the strata

(i.e., partition the range of D into L intervals) and determine what fraction of the samples should

be allocated to each stratum. To deal with the first issue, we have two different schemes: the

equal-probability intervals and Sethi’s optimal points of stratification (Sethi [40]). The other issue

regarding the allocation fractions can also be handled using two different schemes: proportional al-

location and optimal allocation (also called Neyman allocation, see, e.g., Cochran [10] for instance).

However, the optimal allocation scheme is not directly applicable because its computation requires

prior information on the stratum’s standard deviations, which are, in general, unknown.
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4.1 Combined Model of CV and PS

We first introduce the CV+SS combined model, which provides the fundamental basis required

for the development of the target CV+PS combined estimator. Let A`, ` = 1, 2, . . . , L, denote

stratum ` for a stratification variable D, and let Y
(`)
ij have the distribution of Yij conditional on

Dij ∈ A`. Moreover, let θ
(`)
i = E[Y (`)

ij ] = E[Yij |Dij ∈ A`]. We also let C(`)
ij have the distribution

of Cij conditional on Dij ∈ A` with a known expected value µ
(`)
i = E[C(`)

ij ] = E[Cij |Dij ∈ A`].

We let N
(`)
i denote the number of observations {Yij ,Cij , Dij} drawn from stratum A` (i.e., N

(`)
i =

∑n
j=1 1{Dij ∈ A`}), where n represents the total sample size (i.e., n =

∑L
`=1 N

(`)
i ). The value of

N
(`)
i is determined in advance, and simple random sampling is employed in each stratum A`. The

CV+SS combined model can then be described as follows:

For each system i = 1, 2, . . . k, and each stratum A`, ` = 1, 2, . . . , L,

Y
(`)
ij = θ

(`)
i +

(
C(`)

ij − µ
(`)
i

)T
β

(`)
i + ε

(`)
ij

where C(`)
ij is the qi × 1 vector of control variables within stratum A`, following a multivariate

normal distribution, while {ε(`)ij , j = 1, 2, . . . , N
(`)
i } is a set of i.i.d. N

(
0, (τ (`)

i )2
)

random variables,

with (τ (`)
i )2 = (1 − (R(`)

i )2) × Var[Yij |Dij ∈ A`]. Note that (R(`)
i )2 is the square of the multiple

correlation coefficient between Y
(`)
ij and C(`)

ij , which is also called the partial correlation coefficient;

see Theorem 3.4.3 of Tong [41]. In each stratum, the control variables {C(`)
ij , j = 1, 2, . . . , N

(`)
i }

are also i.i.d., and they are independent of {ε(`)ij , j = 1, 2, . . . , N
(`)
i }.

A natural and intuitive way to exploit both CV and SS is to compute the standard CV estimator

within each stratum and then produce a weighted mean (e.g., Grant [17] and L’Ecuyer and Buist

[28]). However, this computational scheme is not appropriate for fully sequential procedures because

it requires implementing a linear regression whenever a new observation is obtained (i.e., in every

sampling stage). Therefore, we incorporate the concept of controlled-sum estimators into the

stratified sampling context. We first collect preliminary-stage samples (Yij ,Cij), j = 1, 2, . . . , m0

to compute β̂i(m0) for each system i = 1, 2, . . . , k. Based on the above CV+SS combined model,

the unbiased estimator of θ
(`)
i can be formulated as follows:

Ŷ (`)(i,N (`)
i ) =

1

N
(`)
i

N
(`)
i∑

j=1

[
Y

(`)
ij − (C(`)

ij − µ
(`)
i )T β̂i(m0)

]
.

Let W
(`)
i = Pr{Dij ∈ A`} denote the probability that the stratification variable Dij belongs to the
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`th stratum A`. A natural unbiased estimator of θi can then be given as follows:

θ̂CV+SS(i, n) =
L∑

`=1

W
(`)
i Ŷ (`)(i,N (`)

i ). (20)

The variance of the stratified controlled-sum estimator is

Var
[
θ̂CV+SS(i, n)

]
=

L∑

`=1

(
W

(`)
i

)2
Var

[
Ŷ (`)(i,N (`)

i )
]

=
L∑

`=1

(
W

(`)
i

)2 Var
[
Y

(`)
ij − (C(`)

ij − µ
(`)
i )T β̂i(m0)

]

N
(`)
i

(21)

=
1
n

L∑

`=1

W
(`)
i Var

[
Y

(`)
ij − (C(`)

ij − µ
(`)
i )T β̂i(m0)

]
(22)

=
1
n

L∑

`=1

W
(`)
i

(
m0 − 2

m0 − qi − 2

)
(1− (R(`)

i )2)Var[Yij |Dij ∈ A`]. (23)

Equation (21) holds because each observation (Y (`)
ij ,C(`)

ij ) is i.i.d. within each stratum and β̂i(m0)

is independent of them. We employ the proportional allocation scheme because it is easier to apply

compared with the optimal allocation scheme. Therefore we have N
(`)
i = n × W

(`)
i , which leads

to Equation (22). Equation (23) follows from the assumed linear CV+SS combined model, with

a similar derivation as in Tsai and Nelson [43]. For an easy comparison with other models, we

would like to obtain a simplified representation of Var[Yij |Dij ∈ A`]. Glasserman et al. [15] showed

that E[Yij |Dij ∈ A`] converges to E[Yij |Dij ] as we infinitely refine the stratification. In this case,

we can apply a linear regression on Y and then write Yij = E[Yij |Dij ] + εij , where E[Yij |Dij ] and

εij are uncorrelated (Glasserman [14]). If E[Yij |Dij ] is a linear function of Dij , then the variance

after applying stratification will be further reduced as the number of strata L increases, and it

will be equivalent to the residual variance when using Dij as the control variable. Consequently,

if we assume that {Yij , Dij} is bivariate normally distributed, we can have Var[Yij |Dij ∈ A`] =

Var[Yij ] × (1 − R2
Y,D) (based on a similar derivation as in Model 0). We can see that the larger

R2
Y,D is, the more variance reduction will be obtained when applying the CV+SS combined model.

In addition, if we also assume that Model 0 holds and compare Equation (23) with the variance

term of Equation (10), then we can obtain Var
[
θ̂CV+SS(i, n)

]
≤ Var

[
Ȳi[m0,m0 + n]

]
as long as the

following condition is satisfied:

L∑

`=1

W
(`)
i

(
1− (R(`)

i )2
)

Var[Yij |Dij ∈ A`] ≤
(
1−R2

Y,C

)
Var[Yij ]. (24)
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If we assume that (R(`)
i )2 = R2

Y,C,∀` = 1, 2, . . . , L, then the inequality is valid for sure because the

variance of the stratified sampling estimator (i.e.,
∑L

`=1 W
(`)
i Var[Yij |Dij ∈ A`]) is smaller than or

equal to the original output variance (i.e., Var[Yij ]) (see Section 4.3 of Glasserman [14]). In a general

case, we simply have to assume the independence between Dij and Cij to ensure that Inequality

(24) holds (see Remark 4.1). In addition, it might be better to use the variable Dij as a stratification

variable instead of including it in the control vector Cij because of the following reasons (i.e., the

incremental benefit of using SS in a CV model might be more significant compared to another CV

model with more control variables). First, in this way we do not need to suffer more from the loss

ratio due to an increased value of qi, as presented in Equation (8) and (23) for instance. Second,

from the theoretical point of view, using the SS approach alone might reduce the variance more

compared to simply using the CV approach because CV can only remove the variance associated

with the linear part of E[Yij |Dij ] (see p.220 of Glasserman [14] for an explanation).

Let S2
` (i,N (`)

i ) represent the sample variance of the controlled responses of system i for those

replications whose stratification variables fall in the `th stratum. Then, a natural estimator of

Var
[
θ̂CV+SS(i, n)

]
is as follows:

V̂ar
[
θ̂CV+SS(i, n)

]
=

L∑

`=1

(
W

(`)
i

)2 1

N
(`)
i

S2
` (i, N (`)

i ). (25)

Fixed the number of strata L, we then obtain the asymptotic result as the total sample size n goes

to infinity (combining the above results with those of Section 4.3.1 in Glasserman [14]):

√
n

(
θ̂CV+SS(i, n)− θi

)
⇒ N(0, ξ2

i ), (26)

where ξ2
i =

∑L
`=1 W

(`)
i Var

[
Y

(`)
ij − (C(`)

ij − µ
(`)
i )T β̂i(m0)

]
under the scheme of proportional alloca-

tion. Moreover, a consistent estimator of ξ2
i is

∑L
`=1 W

(`)
i S2

` (i, N (`)
i ).

When using the SS approach, the conditional sampling process used to generate observations

falling in each stratum and computing stratum probabilities requires additional effort and is some-

times prohibitive. Therefore, the PS technique is considered in which we do not sample conditionally

from the defined stratum, but instead perform ordinary random sampling and then assign appro-

priate weights according to its falling stratum (i.e., N
(`)
i is random and not decided in advance). An

obvious disadvantage of this approach is that some strata may be empty (i.e., none of the n samples

falls in the ith stratum). For the convenience of analysis, we assume that all strata are nonempty

(i.e., N
(`)
i > 0 for all i and `). The combined estimator θ̂CV+PS(i, n) and its corresponding variance

estimator V̂ar
[
θ̂CV+PS(i, n)

]
are formulated in the same way as in Equations (20) and (25), and

both of them can be shown to be unbiased and independent of each other. Furthermore, we can
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also obtain the convergence result (26) for θ̂CV+PS(i, n) by applying the first-order central limit

theory (Glynn and Szechtman [16]), based on the CV+SS combined model. In other words, in

the large-sample limit we can conclude that the poststratified sampling controlled-sum estimator

θ̂CV+PS(i, n) is as efficient as the stratified controlled-sum estimator θ̂CV+SS(i, n) with proportional

stratification.

Remark 4.1. Difficulties may arise when the stratification variable Dij is correlated with the control

vector Cij , which could occur especially when Dij is a component of Cij . We then have to expend

some computational effort to obtain µ
(`)
i and even worse, it is not clear whether R

(`)
i is smaller or

larger than RY,C. If R
(`)
i is strictly smaller than RY,C, the overall variance may be increased when

using the combined model. This issue can be resolved by requiring that the stratification variable

Dij be independent of the control Cij , which can be easily achieved in practice. For instance, in a

queueing model we can let the service time be the control variable and the inter-arrival time be the

stratification variable (assuming the independence between them). To present a simple illustration,

we assume that qi = 1 and that {Yij , Cij , Dij} is multivariate normally distributed. Then, the

partial correlation coefficient between Yij and Cij (given a possible value of Dij) can be written

as follows: Ri = RY,C−RY,DRC,Dq
(1−R2

Y,D)(1−R2
C,D)

(see Section 2.5.3 of Anderson [1]). Therefore, if we assume

that the stratification variable is independent of the control variable (i.e., RC,D = 0), we can then

obtain Ri ≥ RY,C , which immediately leads to Inequality (24). In this case, we can also easily

obtain µ
(`)
i = µi without any computation.

4.2 Fully Sequential Procedure with CV+PS

In this subsection we present an FSP that can employ the combined estimator θ̂CV+PS(i, n), which

is the same as in Equation (20) with the notation CV+SS replaced by CV+PS, described in Section 4.1.

Similar to the FSP with CV+PCE, in this procedure we update the variance estimator whenever

a single new observation is obtained. It should be noticed that for each system i, we only have to

recompute the sample variance S2
` (i,N (`)

i ) for stratum `, which the new Dij observation belongs to.

This implies that the required computational overhead to update the variance estimator is equiva-

lent to that of the procedures presented in Section 2.1 and Appendix B.3. The variance estimator

V̂ar
[
θ̂CV+PS(i, n)

]
(the same as in Equation (25) with the notation CV+SS replaced by CV+PS) is

a strongly consistent estimator of Var
[
θ̂CV+PS(i, n)

]
, which is asymptotically equivalent to the

variance of the stratified controlled-sum estimator under the scheme of proportional allocation.

Ideally, we need to choose the number of strata L that is large enough to achieve a significant

variance reduction but also small enough relative to the total sample size n to avoid the occur-

rence of empty stratum. In the case when a stratum is empty (i.e., N
(`)
i = 0), Glasserman [14]
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suggested to replace that stratum sample mean with zero but then the poststratified estimator will

be biased. Cochran [10] proposed combining two or more strata (including that empty stratum)

before computing the poststratified estimator. For a general use of the proposed procedure, we

suggest employing the original CV estimator when there is at least one stratum with less than two

observations for these r outputs (in order to compute the sample variance within each stratum),

and otherwise, we suggest employing the combined estimator θ̂CV+PS(i, r) (with a fixed value of

L) (see Remark 4.2). The following procedure description is based on the above assumption (i.e.,

N
(`)
i ≥ 2 for all i and `) regardless of whether the sample size is n0 or r.

Procedure 2 (Fully Sequential Procedure with CV+PS).

Step 0. Setup: Select confidence level 1/k < 1−α < 1, IZ parameter δ > 0, the preliminary-stage

sample size m0 > q + 2, the number of strata L ≥ 2, and the first-stage sample size n0 ≥ 2L.

Let a = − log [2α/(k − 1)].

Step 1. Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention. For each

system i ∈ I, generate {(Yij ,Cij) , j = 1, 2, . . . , m0} and then compute the estimator β̂i(m0)

according to Equation (7). For each system i ∈ I, perform additional independent sampling

to generate {(Yij ,Cij , Dij) , j = m0+1,m0+2, . . . ,m0+n0}, resulting N
(`)
i samples be within

stratum A`, where
∑L

`=1 N
(`)
i = n0. Let r be the observation counter. Set r = n0.

Step 2. Update: For each system i ∈ I, compute θ̂CV+PS(i, r) and its corresponding variance

estimator V̂ar
[
θ̂CV+PS(i, r)

]
, according to Equations (20) and (25), respectively.

Step 3. Elimination:

For any pair of systems i and h in I, i 6= h, compute

σ̂2
ih(r) = V̂ar

[
θ̂CV+PS(i, r)

]
+ V̂ar

[
θ̂CV+PS(h, r)

]
,

Zih(r) = θ̂CV+PS(i, r)− θ̂CV+PS(h, r).

Set Iold = I. Let

I = Iold \
{

i ∈ Iold : Zih(r) < min
{

0,−aσ̂2
ih(r)
δ

+
δ

2

}
for some h ∈ Iold and h 6= i

}
,

where A \B = {x : x ∈ A and x /∈ B}.

Step 4. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the

best. Otherwise, let r = r + 1 and take the rth sample
(
Yi(m0+r),Ci(m0+r), Di(m0+r)

)
from
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system i ∈ I. For each system i ∈ I, if the rth sample of the stratification variable is from

stratum A` (i.e., Di(m0+r) ∈ A`), then update N
(`)
i = N

(`)
i + 1, and also update Ŷ (`)(i,N (`)

i )

and S2
` (i,N (`)

i ). Then go to Step 2.

Remark 4.2. For each system i, we suggest using the controlled-sum estimator Ȳi [m0,m0 + r] and

its corresponding variance estimator when there is at least one stratum with less than two observa-

tions for these r collected observations. Otherwise, we use the combined estimator θ̂CV+PS(i, r) and

its variance estimator V̂ar
[
θ̂CV+PS(i, r)

]
. This can be implemented easily in our procedure because

in Step 3 we employ the summation of the marginal variance estimator for each pair of systems

(instead of using the variance of the paired observations). The asymptotic statistical validity still

holds under this setting.

We close this section by formally stating the asymptotic statistical validity of Procedure 2 as

the second theorem.

Theorem 2. Let {(Yij ,Cij) , j = 1, 2, . . . , m0} be the m0 preliminary-stage outputs and control

variables from system i, i = 1, 2, . . . , k, yielding the estimator β̂i(m0) in Equation (7). Let

{(Yij ,Cij , Dij) , j = m0 + 1,m0 + 2, . . . , m0 + n0} be the n0 first-stage outputs, control variables

and stratification variables from system i, resulting N
(`)
i samples be within stratum A`, where

∑L
`=1 N

(`)
i = n0 and L is the number of strata. We assume that N

(`)
i ≥ 2 for all i and `. Further-

more, we assume that samples (Yij ,Cij , Dij) taken from the same system i are i.i.d. for j = 1, 2, . . .,

and also independent from those from any other system h 6= i. Let θi denote the unknown mean of

system i. Without loss of generality, we let θ1 − δ ≥ θ2 ≥ . . . ≥ θk, where δ is the IZ parameter.

Let the first-stage sample size n0 = n0(δ) be a function of δ such that n0 → ∞ and δ2n0 → 0 as

δ → 0. Then, as δ → 0, Procedure 2 selects system 1 as the best with a probability at least 1− α.

Remark 4.3. Under the additional assumption that there is no empty stratum, i.e., N
(`)
i ≥ 2 for all

i and `, Theorem 2 can be considered as a special case of Theorem 1 without any Uij but all Vi`

being applied with the CV+PS technique. In fact, this assumption can be easily satisfied in the

asymptotic regime δ → 0 since the first-stage sample size n0(δ) →∞ implying that N
(`)
i →∞ for

each ` = 1, 2, . . . , L using the proportional allocation scheme.

5 Numerical Experiments

In this section, we conduct an extensive empirical study to compare our proposed procedures (with

integrated VRTs) to different existing fully sequential procedures. We implement the ordinary fully

sequential procedures of Kim and Nelson [21] (denoted as KN ) and Tsai and Nelson [43] (which
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assumes Model 0 and is denoted as T N ) as well as their variance-updating versions (denoted asKN -

U and T N -U , respectively), which then serve as reasonable benchmark procedures as described in

detail in Appendices B.2 and B.3. It is easy to show the asymptotic validity of these two procedures,

which is a similar but simpler process than the proof of Theorem 1 shown in Appendix A.

The system outputs are represented as various configurations of k normal distributions. In all

cases, system 1 has the largest true mean and is the best system. For the sake of simplicity, in

the following description, we skip the notation of the replication counter j. Let Yi be a simulation

output from system i for i = 1, 2, . . . , k. For simplicity, we assume that each system has one control

variable (i.e., qi = 1 for all i). We then assume Model 0 holds and that the observation can be

represented as

Yi = θi + (Ci − µi)βi + εi

where {εi, i = 1, 2, . . . , k} are N(0, σ2
ε ) random variables. The input random variables {Ci, i =

1, 2, . . . , k} are N(0, σ2
c ) random variables (i.e., µi = 0) and independent of {εi, i = 1, 2, . . . , k}. We

also set βi = 1 for each system i = 1, 2, . . . , k. Therefore, {Yi, i = 1, 2, . . . , k} are distributed as

N(θi, σ
2
y) random variables, where σ2

y = σ2
c +σ2

ε . The squared correlation coefficient between Yi and

Ci is R2
Y,C = σ2

c/(σ2
c + σ2

ε ) for each system i = 1, 2, . . . , k. We set σ2
y = 1 and therefore σ2

c = R2
Y,C

for each system i = 1, 2, . . . , k.

For the CV+CE combined models, we let Xi denote the conditional variable used for system i.

Further, in the Combined Model I and II we let {Yi, Xi} be bivariate normally distributed with

a squared correlation R2
Y,X . In the Combined Model III, we assume that {Xi, Ci} is bivariate

normally distributed with a squared correlation R2
X,C . For the Combined Model II, we do not

assume the value of β
(2)
i and instead obtain its value by solving the following equation: R2

E[Y |X],C =

R2
X,C = (β

(2)
i )2×Var[Ci]

Var[E[Yi|Xi]]
, where we know Var[E[Yi|Xi]] = R2

Y,X (because σ2
y = 1) and Var[Ci] = R2

Y,C

(derived from Model 0). We can then obtain Var[ε(2)
i ] using the following equation: Var[E[Yi|Xi]] =

(β(2)
i )2 × Var[Ci] + Var[ε(2)

i ]. It should be noticed that the choice of R2
Y,C is irrelevant to the

procedure performance because the value of Var[ε(2)
i ] remains the same as long as R2

Y,X and R2
X,C

are determined. A similar variable generation process is implemented for the Combined Model I

and III. However, in the simulation experiments of Combined Model I, it is also necessary to assign

a parameter ρ such that 0 < ρ < 1 and Var[E[Ci|Xi]] = Var[Ci]× ρ. Following this setting, we can

have R2
X,E[C|X] = R2

X,C × (1
ρ). Notice that in Combined Model I we do not simultaneously assume

that {Yi, Xi} and {Ci, Xi} are bivariate normally distributed which will result in an extreme case

where a 100% variance reduction can be achieved.

For the CV+PS combined model, we let Di denote the stratification variable used for system i,

which is assumed to be normally distributed and correlated with Yi (with a squared correlation
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R2
Y,D), but is independent from Ci (i.e., R2

C,D = 0). When applying the stratified sampling tech-

nique, we must know the exact distribution of the stratification variable, which is usually assumed

to be normally distributed, at least asymptotically, in the related literature. For the determination

of the boundaries between the strata, the experimental results from existing literature often reveal

that Sethi’s stratification scheme is better than the equal-probability scheme (e.g., Sabuncuoglu

et al. [39]). Therefore, in the current experiments we use Sethi’s optimal stratification scheme for a

normal random variable under proportional allocation to classify each of the replicated observations

{Yi, Ci, Di} into the appropriate stratum. In the literature on PS technique, L is often specified in

the range of 2 ≤ L ≤ 6, where it is experimentally found that the marginal efficiency gain may not

be significant when using more than 4 strata (see Chapter 5 of Cochran [10], Sabuncuoglu et al.

[39], and Wilson and Pritsker [46]). In the following experimental study we use L = 2 and 4.

We compare the performance of each FSP on different configurations of the systems, with

examining factors including the practically significant difference δ, the number of systems k, the

number of strata L (when the PS technique is used), the configurations of the system means θi, and

the squared correlation coefficients R2
Y,C , R2

Y,X , R2
X,C , and R2

Y,D. Common random numbers are

not employed. The configurations, the experimental design, and the results are described below.

5.1 Configurations and Experimental Design

We investigate the slippage configuration (SC) of the true means of the systems in which θ1 is

set to exactly δ, while θ2 = θ3 = · · · = θk = 0. This is the most difficult scenario in which to

achieve the pre-specified PCS, because all the inferior systems are very close to the best system.

We choose δ =
√

(σ2
c + σ2

ε ) /n0; therefore, the indifference-zone parameter can be interpreted as one

standard deviation of the first-stage sample mean. To examine the efficiency of these procedures

in eliminating inferior systems, the configuration of monotone-decreasing means (MDM) is also

used. In the MDM configuration, the means of systems are determined according to the following

formula: θ1 = δ and θi = θ1 − (i− 1)(δ/2), for i = 2, 3, . . . , k.

The number of systems simulated in each experiment is varied with k = 10, 30, 50, 100. In all

experiments, we set the nominal PCS 1−α = 0.95, the preliminary-stage sample size m0 = 10, and

the first-stage sample size n0 = 20. These algorithm parameter settings are based on the guidelines

provided in Tsai and Kuo [42] and Tsai and Nelson [43]. For each configuration, 500 trials of each

procedure are performed to compare the performance measures, including the estimated PCS and

the average number of simulated observations per system (ANS). To simplify the presentation, we

round the values of PCS and ANS to the nearest hundredth and integer number, respectively.
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5.2 Summary of the Results

The PCS of the proposed fully sequential procedures using the combined models (either with or

without the variance updating mechanism) is higher than the nominal level 0.95 in most configura-

tions. We also observe that the required correlation threshold for our combined models to improve

on the traditional models is not difficult to achieve. Instead of presenting comprehensive results

from such a large simulation study, we demonstrate details of some specific results that highlight

the key conclusions.

5.2.1 Fully Sequential Procedures with CV+PCE

In Table 3, we evaluate the effect of different levels of various correlations on the performance of the

FSP with CV+PCE (which is described in Section 2.1) where Model 0 and Combined Model II are

used as a combination. We consider the slippage configuration and let PCE denote the probability

that there exists a conditional variable Xi such that E[Yi|Xi] can be obtained (i.e., Combined Model

II can be applied) in a single simulation replication. In other words, Model 0 is employed in each

replication with a probability 1− PCE. The PCS of the FSP with CV+PCE is still greater than or

equal to the nominal level 0.95, but it is not so conservative as the previously presented T N -like

procedure with CV+CE (i.e., its PCS is closer to 0.95). As shown in Table 3, a larger PCE value

makes the procedure more efficient in terms of reduced ANS because a greater efficiency gain can

be reaped from the combined model. It should also be noticed that the CV+PCE procedure should

be equivalent to the CV+CE procedure with Combined Model II when PCE = 1. However, the

ANS values when PCE = 1 are smaller than those presented in Table 9 because in the CV+PCE

procedure, the variance estimator is updated sequentially. Thus, the required consumption of ANS

is smaller, and we can only achieve an asymptotic PCS guarantee.

Note that when implementing the CV+PCE scheme in the numerical experiments, we actually

use the following equation (without loss of generality, we take Combined Model II as an example),

θ̂
(2)

CV+CE(i, n) = Ȳ
(2)
i (n)−

(
C̄(2)

i (n)− µi

)T
β̂i(m0)

where β̂i(m0) is obtained from the pure CV model with m0 independent samples in a prelimi-

nary stage. In other words, we use the same β̂i(m0) for both θ̂CV(i, n) and θ̂
(2)

CV+CE(i, n). This

compromise is due to the fact that there might be a very small number (or none) of CV+CE ob-

servations in the preliminary stage for some systems. Based on this setting, we then assume that

βi = β
(2)
i (which implies that Cov

[
Ȳ

(2)
i (n), C̄(2)

i (n)
]

= Cov
[
Ȳi(n), C̄i(n)

]
) to obtain the following

more convenient result. In order to make sure that the additional benefit of reducing variances

by CV+CE is achieved (i.e., Var
[
θ̂

(2)
CV+CE(i, n)

]
≤ Var

[
θ̂CV(i, n)

]
), we only need to require that
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Table 3: Performance measures for our CV+PCE fully sequential procedures under the SC when
m0 = 10, n0 = 20, q = 1 and 1− α = 0.95.

PCE R2
Y,C R2

Y,X R2
X,C

k = 10 k = 30 k = 50 k = 100
PCS ANS PCS ANS PCS ANS PCS ANS

0 0.5 0.6 0.4 0.96 74 0.95 89 0.97 97 0.97 98
0.2 0.5 0.6 0.4 0.96 65 0.96 79 0.97 89 0.97 89
0.5 0.5 0.6 0.4 0.95 55 0.96 64 0.97 72 0.97 74
0.8 0.5 0.6 0.4 0.96 45 0.97 51 0.95 55 0.97 58
1 0.5 0.6 0.4 0.95 39 0.95 45 0.96 46 0.97 49
0 0.5 0.5 0.5 0.96 74 0.95 89 0.97 97 0.97 98

0.2 0.5 0.5 0.5 0.95 64 0.96 76 0.97 86 0.95 87
0.5 0.5 0.5 0.5 0.96 49 0.95 56 0.97 65 0.96 65
0.8 0.5 0.5 0.5 0.96 37 0.98 40 0.96 44 0.97 44
1 0.5 0.5 0.5 0.99 32 0.96 33 0.95 34 0.95 35
0 0.5 0.4 0.6 0.96 74 0.95 89 0.97 97 0.97 98

0.2 0.5 0.4 0.6 0.96 61 0.96 74 0.98 83 0.99 84
0.5 0.5 0.4 0.6 0.95 45 0.95 52 0.96 56 0.95 57
0.8 0.5 0.4 0.6 0.95 34 0.96 35 0.95 37 0.95 37
1 0.5 0.4 0.6 0.98 30 0.99 30 0.97 30 0.96 30

Var
[
ε
(2)
ij

]
≤ Var [εij ], which is equivalent to the condition (17).

5.2.2 Fully Sequential Procedures with CV+PS

In the experiments on fully sequential procedures with CV+PS, we compare the procedure presented

in Section 4.2 to KN -U and T N -U under the slippage configuration with the settings of L = 2 and

4 (see Table 4 and 5). The CV+PS fully sequential procedure can still achieve the pre-specified

PCS guarantee (which can only be proven asymptotically) and yields better performance in terms

of ANS as anticipated when the value of R2
Y,C or R2

Y,D is increased. The experimental results also

indicate that the CV+PS procedure is superior to T N -U when the value of R2
Y,D is greater than or

equal to 0.1, which shows that the required correlation threshold is easier to achieve as compared to

the case of CV. We find that the advantage of our CV+PS procedure relative to KN -U and T N -U
in terms of ANS is more significant when L = 4, which is due to the fact that more stratification

layers naturally lead to more variance reduction. In the current experiments with k = 100, the

additional number of replications (for each system on average) required to be able to apply PS

after the first stage is 2.04 and 17.73 for the cases of L = 4 and L = 6, respectively. In the case of

L = 2, there is no empty stratum after the first-stage sampling process in all examined cases.
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Table 4: Performance measures for our CV+PS fully sequential procedures in comparison with
KN -U and T N -U under the SC when L = 2, m0 = 10, n0 = 20, q = 1 and 1− α = 0.95.

R2
Y,C R2

Y,D
k = 10 k = 30 k = 50 k = 100

PCS ANS PCS ANS PCS ANS PCS ANS
KN -U 0.98 116 0.95 141 0.99 151 0.96 169
T N -U 0.3 0.96 105 0.95 126 0.97 134 0.95 146
CV+PS 0.3 0.1 0.96 93 0.98 121 0.97 126 0.97 142

0.3 0.3 0.97 80 0.99 105 0.98 105 0.98 119
0.3 0.5 0.96 64 0.97 85 0.96 84 0.98 96
0.3 0.7 0.95 50 0.98 66 0.95 65 0.98 73

T N -U 0.5 0.96 74 0.95 92 0.97 99 0.97 102
CV+PS 0.5 0.1 0.96 69 0.97 87 0.98 95 0.98 97

0.5 0.3 0.95 54 0.96 70 0.99 75 0.99 75
T N -U 0.7 0.96 51 0.95 56 0.97 60 0.95 62
CV+PS 0.7 0.1 0.96 46 0.95 53 0.98 58 0.97 56

0.7 0.3 0.96 36 0.96 38 0.96 40 0.95 38

Table 5: Performance measures for our CV+PS fully sequential procedures in comparison with
KN -U and T N -U under the SC when L = 4, m0 = 10, n0 = 20, q = 1 and 1− α = 0.95.

R2
Y,C R2

Y,D
k = 10 k = 30 k = 50 k = 100

PCS ANS PCS ANS PCS ANS PCS ANS
KN -U 0.98 116 0.95 141 0.99 151 0.96 169
T N -U 0.3 0.96 105 0.95 126 0.97 134 0.95 146
CV+PS 0.3 0.1 0.95 93 0.99 119 0.98 120 0.97 128

0.3 0.3 0.95 72 0.96 86 0.95 90 0.98 96
0.3 0.5 0.96 52 0.98 59 0.97 61 0.95 64
0.3 0.7 0.97 36 0.95 40 0.97 40 0.96 42

T N -U 0.5 0.96 74 0.95 92 0.97 99 0.97 102
CV+PS 0.5 0.1 0.95 67 0.96 78 0.96 80 0.96 89

0.5 0.3 0.96 47 0.95 52 0.97 55 0.99 58
T N -U 0.7 0.96 51 0.95 56 0.97 60 0.95 62
CV+PS 0.7 0.1 0.95 45 0.97 46 0.96 48 0.98 50

0.7 0.3 0.96 31 0.98 32 0.96 32 0.95 32
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6 Illustrative Examples

In this section we first consider the Markovian queue with state-dependent service (e.g., refer to

Section 2.9 in Gross et al. [18]). We assume that the system has Poisson arrivals, exponentially

distributed service times, one server, an infinite buffer, and a first-come-first-served queueing dis-

cipline. The customer arrival rate λi is constant but different for each system i. We want to allow

the server to become faster when there are more customers waiting in queue, which is referred

as the dynamic service rate control policy in the literature (e.g., Kumar et al. [25]). The service

rate for customer m from system i is specified as µi + 0.01 × (Qm − 6), where Qm is random and

represents the number of customers waiting in line when the mth customer just enters the server.

Each procedure is implemented for ten different configurations, where the performance measure is

the steady-state mean of the waiting time in the system. The ten configurations along with their

true expected waiting times, which are computed analytically, are given in Table 6 (see Section 2.9

in Gross et al. [18] for the derivation). Notice that a system with a smaller waiting time is better,

so System 1 consisting of one fastest server is the best system (but does not have the lowest arrival

rate).

All candidate systems are initialized in a steady state to mitigate the initial transient bias.

That is, for each replication we sample the initial condition in accordance with the steady-state

distribution of the number of customers in the system, which can be computed in advance. For

each replication, we use the average waiting time for thirty customers as the output. For the

procedures involving control variates, the average service time for thirty customers is used as the

control variable for the replication j, which means that

Yij =
∑30

m=1 Wijm

30
and Cij =

∑30
m=1 Sijm

30
,

where Wijm is the waiting time in the system for customer m of replication j from system i, and

Sijm is the service time for customer m of replication j from system i. For the fully sequential

selection procedures that employ sample means (Kim and Nelson [21]), we choose the first-stage

sample size n0 = 30. For all the CV-related procedures, the preliminary-stage and first-stage

sample size are set to m0 = 10 and n0 = 20. The nominal probability of correct selection is set to

1 − α = 0.95. The indifference-zone parameter is set to δ = 0.1, and thus the correct selection is

to choose System 1 because the difference between the expected waiting times of System 1 and 2

is greater than 0.1.
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6.1 Results of the CV+CE and CV+PS Procedures

Suppose that there are p customers either waiting in line or in service when the mth customer

arrives. When CV+CE Combined Model II is applied, we use the following conditional expectation

of outputs: E[Wijm|Qm−1, Qm−2, . . . , Qm−p] =
∑m−1

r=m−p (µi + 0.01× (Qr − 6))−1. The conditional

expectation equals to zero when p = 0. When CV+CE Combined Model III is applied, we then

use the following conditional expectation of controls: E[Sijm|Qm] = (µi + 0.01× (Qm − 6))−1.

It should be noted that CV+CE Combined Model I cannot be applied in this case because the

conditional variables for Wijm and Sijm are different. When applying the PS technique, we choose

the inter-arrival time as the stratification variable (also taking the average of thirty customers)

and specify L = 2. It should also be noted that the control variable and the stratification variable

are independent from each other. We use Sethi’s optimal stratification scheme to determine the

boundaries between the strata, and use proportional allocation scheme to decide the allocation

fractions.

The following experimental results can be explained by the estimated correlations based on

1000 replications (for System 1): R2
Y,C = 0.272, R2

Y,A = 0.153 and R2
Y,Q = 0.003, where A and Q

represent the average inter-arrival time and the average number of waiting customers for the first

thirty customers in each replication. Table 7 presents the results of the procedures developed in

this paper and compares them to those of other procedures with 500 complete macro-replications.

We also test the FSP of Tsai and Nelson [43] where service times and inter-arrival times are both

used as the control variables (denoted as T N -2). The observed PCS of all procedures are greater

than the nominal level 0.95. In terms of ANS, it is not surprising that T N and T N -U are superior

to KN and KN -U , respectively (because R2
Y,C is greater than 0.2). We can also see that T N -2

is better than T N which implies that, in this case, the inclusion of one more control variable can

increase the correlation between the output and controls, and the gains more than offset the losses

incurred by the loss ratio. The use of CV+CE Combined Model II can result in a more significant

improvement; we can see that there is a reduction of 21% in the ANS when compared to T N .

However, the use of CV+CE Combined Model III results in a worse performance when compared

to T N , which is an anticipated result because R2
Y,Q could be as low as 0.003 (which also follows

from the previous analytical results discussed in Section 3.2.3). The CV+PS procedure also leads

to a reduction in ANS when compared to T N -U (because R2
Y,A could be greater than 0.1).

6.2 Results of the CV+PCE Procedure

To illustrate the applicability of the proposed CV+PCE procedure, an additional feature of mul-

ticlass customers is added to the original queueing system (see Chapter 5 of Gautam [13] for
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Table 6: The ten queueing systems with dynamic service rate (= µi + 0.01× (Qm − 6)) and their
expected waiting times in steady state.

System i λi µi E[Wi]
1 4 5.00 0.964
2 3 3.90 1.090
3 2 2.90 1.119
4 4 4.85 1.105
5 3 3.85 1.148
6 2 2.85 1.182
7 4 4.80 1.159
8 3 3.80 1.211
9 2 2.80 1.252
10 4 4.75 1.218

an introduction of multiclass queueing systems). We assume that there are two classes of cus-

tomers with different service time distributions (exponentially and normally distributed). The

variance of the normal distribution is assumed to be equal to the square of its mean. The dy-

namic service rates of both types of customers are specified in the same way as in the previously

described Markovian model. Suppose that there are p > 0 customers either waiting in line or

in service when the mth customer arrives. We can then obtain E[Wijm|Qm−1, Qm−2, . . . , Qm−p] =
∑m−1

r=m−(p−1) (µi + 0.01× (Qr − 6))−1+E[Sij(m−p)−s|Sij(m−p) > s], where the notation s represents

the amount of time the (m−p)th customer already spent in service when the mth customer arrives.

It is difficult to compute E[Sij(m−p)−s|Sij(m−p) > s] when Sij(m−p) comes from the assumed normal

distribution, and therefore it is replaced with the actual remaining service time. More specifically,

if all of the thirty customer waiting times (i.e., {Wijm, ∀m = 1, 2, . . . , 30}) can be applied with

the CE technique (i.e., Sij(m−p) comes from the exponential distribution for the thirty customers),

so for that particular replication we can then employ the estimator Vij defined in the CV+PCE

procedure of Section 2.1. On the other hand, if any of the thirty customer waiting times cannot

be applied with CE, we then use the estimator Uij for the jth replication. In the experiment, we

specify that an arriving customer with normally distributed service time occurs with a probability

of 0.025. Table 8 presents the results of the CV+PCE procedure in comparison with other proce-

dures in 500 complete macro-replications. The results show a significant improvement in terms of

ANS when using the CV+PCE procedure.
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Table 7: Results for our procedures with combined models in comparison with the existing proce-
dures in 500 Trials with δ = 0.1 and 1− α = 0.95.

Procedure PCS ANS Procedure PCS ANS
KN 0.988 202 KN -U 0.984 186
T N 0.996 189 T N -U 0.982 169
T N -2 0.992 183 CV+PS 0.978 156

CV+CE-II 0.990 150 CV+CE-III 0.994 231

Table 8: Results for our CV+PCE procedure in comparison with the existing procedures in 500
Trials with δ = 0.1 and 1− α = 0.95 (with two classes of customers).

Procedure PCS ANS
KN 0.990 207
T N 0.996 196
KN -U 0.990 171
T N -U 0.988 161

CV+PCE 0.990 142

7 Conclusions

In this paper, we propose specific combined models and corresponding fully sequential selection

procedures to jointly employ CV, CE and PS techniques. We also compare them to ordinary

fully sequential procedures that use sample means or pure CV estimators via statistical analysis

and experimental study. It should be noted that most of the existing works only evaluated the

performance of VRTs based on simulation experiments for specific stochastic systems. For the case

of jointly applying CV and CE, based on analytical results we demonstrate that Combined Model

I is better than Combined Models II and III, and that both Combined Models I and II are superior

to the pure CV model. We have not found comparative studies among these three combined models

in any existing literature that we know. More specifically, applying CE to the output and control

variables simultaneously is more beneficial than only applying CE to the output, but applying CE

alone to the controls is not helpful beyond the given CV model. The CV+CE combined models

can deliver better efficiency when the conditional variable is less correlated with the output and

is significantly correlated with the control variables (although we may not have much choice). By

contrast, when applying the CV+PS combined model, we require that the exact distribution of the

stratification variable is known, and in the meantime prefer to choosing a stratification variable

that is largely correlated with the output but less correlated with the control variables. It should

be noted that the proposed CV+PS estimator is new and appropriate for use in fully sequential
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procedures. The marginal benefit of using CE or PS could be greater than that of using CV

because they do not suffer from the loss ratio (see Section 3.1). We have presented fully sequential

selection procedures that can employ CV+CE combined models and can be shown to be statistically

valid with finite samples. We also propose fully sequential procedures for CV+PCE and CV+PS

combined estimators whose statistical validity can be proven in the asymptotic regime. In the

proposed procedures, the application of the CV+CE or CV+PS models would not increase the

computational overhead much beyond that of the CV model.

There are several possible directions to extend or improve the developed approaches. For in-

stance, it has been shown that both CE and PS are particularly effective in rare event problems

where excessive simulation time is generally required to collect a sufficient number of observations

(see Lavenberg and Welch [27] and Rubino and Tuffin [38] for illustrative examples where these

techniques are applied). Therefore an extensive experimental evaluation of rare event problems

using the proposed VRT combined schemes would be a worthwhile follow-up research work. Addi-

tional efficiency improvement of the proposed procedures may be possible if we employ a CV+SS

combined model. However, in this case, it is not clear how to determine which stratum the next

generated observation should belong to (i.e., the sequence of stratified samples). Notice that in the

literature, the SS technique is often implemented by taking batches; however, with the setting in

our target problem, a fully sequential procedure is expected to become inefficient if a “stage” is

defined by a batch mean, and a large batch size is often required as well. The other possible topic

of future study is to consider VRT combined models where the control mean is unknown and must

be estimated (Pasupathy et al. [33]).
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A Proof of Theorem 1

The proof of Theorem 1 follows similar argument as proving the statistical validity of the APS

(Asymptotic Parallel Selection) Procedure in Luo et al. [29], which also need to establish the

following important lemmas. It is worthwhile pointing out that constructing the Brownian motion

process in this paper is different from that in Luo et al. [29].

We start from considering the slippage configuration where the difference between the mean of

the best and all other systems equals to the IZ parameter δ, i.e., θ2 = θ3 = · · · = θk = θ1 − δ, and

then demonstrate the validity of general IZ settings in the finial proof.

Consider any pair of systems, systems 1 and h, where h = 2, 3, . . . , k. Define

N δ
1h = d2a(p1u

2
1 + q1v

2
1 + phu2

h + qhv2
h)/δ2e,

where a = − log [2α/(k − 1)] and 1 − qi = pi = lim
r→∞mir/r, i = 1 or h, is limiting proportion as

specified in Theorem 1, and dxe denotes the smallest integer greater than or equal to x. Then N δ
1h

is the maximum number of observations needed to make the elimination decision of either system 1

or h. Let s = r/N δ
1h be any number in [0, 1]. Define the stochastic process Z̃1h(s),

Z̃1h(s) =





1√
p1u2

1+q1v2
1+phu2

h+qhv2
h

· r√
Nδ

1h

Z1h(r), n0 ≤ r ≤ N δ
1h,

0, 0 ≤ r < n0,

=





1√
p1u2

1+q1v2
1+phu2

h+qhv2
h

· U1(m1r)+V1(n1r)−Uh(mhr)−Vh(nhr)√
Nδ

1h

, n0

Nδ
1h

≤ s ≤ 1,

0, 0 ≤ s < n0

Nδ
1h

,
(27)

where Z1h(r) is defined in Equation (6). In fact, we care only about the process Z̃1h(s) evolves

in the interval s ∈ [n0/N
δ
1h, 1] since the pairwise comparisons are conducted only when r ≥ n0.

However, for mathematical rigorousness, we force Z̃1h(s) = 0 when s ∈ [0, n0/N
δ
1h), which is well

defined as shown in the following lemma.

Lemma 1 (Convergence to a Brownian Motion Process). Let D[0, 1] be the Skorohod space of all

right-continuous real-valued functions on [0, 1] with limits from the left everywhere, endowed with

the Skorohod J1 topology. Thus, Z1h(·) defined by Equation (27) with h = 2, 3, . . . , k is an element

of the Skorohod space D[0, 1]. Suppose that the conditions in Theorem 1 are all satisfied. Then,

under the SC, i.e., θ2 = θ3 = · · · = θk = θ1 − δ, we have

Z̃1h (·) ⇒ B∆(·), as δ → 0,

where B∆(s) = B(s) + ∆s, a standard Brownian motion process with a constant drift ∆ =
√

2a.
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Proof. Let εδ = n0/N
δ
1h. Recall that n0 →∞ and δ2n0 → 0 as δ → 0. Then, N δ

1h →∞ and εδ → 0

as δ → 0. Notice that Z̃1h(s) = 0 for 0 ≤ s < εδ, which implies that

Z̃1h(0) = B∆(0) = 0 and Z̃1h(·) is right-continuous at s = 0 for all δ. (28)

We next focus only on s ∈ [εδ, 1], that is, r ∈ [n0, N
δ
1h].

We first analyze the term Ui(mir)√
Nδ

1h

, i = 1 or h, on the right-hand-side (RHS) of Equation (27).

Note that the same argument can be applied on Vi(nir)√
Nδ

1h

. At stage r, let air = mir
r , which is random

variable converges to pi with probability 1 (w.p.1). We mainly focus on the nontrivial case that

pi ∈ (0, 1). For the case that pi = 0 or 1, the derivation is relatively easy and can be incorporated

in the same formula. Let bir = airN
δ
1h. Then, as δ → 0, by Theorem 14.4 in Billingsley [4] and

Theorem 11.4.5 in Whitt [45], we know that

Ui(mir)−mirθi√
N δ

1h

=
∑bbirsc

`=1 (Ui` − θi)√
bir

·
√

bir√
N δ

1h

⇒ uiBiu(s) · √pi,

where Biu(s) is a standard Brownian motion process. Similarly, we obtain that

Vi(nir)− nirθi√
N δ

1h

⇒ viBiv(s) · √qi,

where Biv(s) is also a standard Brownian motion process that is independent of Biu(s) due to

the assumption of independence between {Uij , j = 1, . . . , mir} and {Vi`, ` = 1, . . . , nir}. Then, as

δ → 0,

U1(m1r) + V1(n1r)− Uh(mhr)− Vh(nhr)√
N δ

1h

=
[U1(m1r)−m1rθ1] + [V1(n1r)− n1rθ1]− [Uh(mhr)−mhrθj ]− [Vh(nhr)− nhrθh]√

N δ
1h

+
r(θ1 − θh)√

N δ
1h

⇒ √
p1u1B1u(s) +

√
q1v1B1v(s) +

√
phuhBhu(s) +

√
qhvhBhv(s) +

√
2a(p1u2

1 + q1v2
1 + phu2

h + qhv2
h) · s,

where the last part is due to the definition of N δ
1h and r = sN δ

1h and the assumption that θ1−θh = δ.
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By Theorem 11.4.5 in Whitt [45], we know that

{
Z̃1h(s) : 0 < s ≤ 1

}
⇒

{
1√

(p1u2
1 + q1v2

1 + phu2
h + qhv2

h)

[√
p1u1B1u(s) +

√
q1v1B1v(s)

+
√

pguhBhu(s) +
√

qhvhBhv(s)
]

+
√

2a · s : 0 < s ≤ 1

}

D=
{
B(s) + ∆s : 0 < s ≤ 1

}
, (29)

where the last equation is due to the independence among B1u(s), B1v(s), Bhu(s) and Bhv(s), and the

notation D= means “equal in distribution”, and ∆ =
√

2a. Combined the results in Equations (28)

and (29), we have

{
Z̃1h(s) : 0 ≤ s ≤ 1

}
⇒

{
B(s) + ∆s : 0 ≤ s ≤ 1

}
,

which concludes the proof.

From the proof of Lemma 1, it is interesting to point out that the construction of the stochastic

process Z̃1h(s) is to scale the original process Z1h(r) by the term 1√
p1u2

1+q1v2
1+phu2

h+qhv2
h

· r√
Nδ

1h

in

order to establish the limiting process B∆(s). Recall that, in Procedure 1, the elimination decision

of system i is made at stage r when there exists some surviving system h such that the following

condition is satisfied, that is,

Zih(r) < min
{

0,−aσ̂2
ih(r)
δr

+
δ

2

}
. (30)

In order to make the comparison condition also hold for Z̃1h(s), we need to scale the RHS in

Inequality (30) by the same term. For simplicity of presentation, we define the upper bound and

lower bound as follows,

Γih(r) = max
{

0,
aσ̂2

1h(r)
δr

− δ

2

}
and − Γih(r) = min

{
0,−aσ̂2

1h(r)
δr

+
δ

2

}
,

which forms the symmetric continuation region Λih for the pair of systems i and h. Since we

are interested in the pair of systems 1 and h, where h = 2, 3, . . . , k, we next consider only the

continuation region Λ1h, for h = 2, 3, . . . , k.
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Let Γδ
1h(s) be the upper bound for Z̃1h(s), which is defined as

Γδ
1h(s) =

1√
p1u2

1 + q1v2
1 + phu2

h + qhv2
h

· r√
N δ

1h

· Γih(r) (31)

= max





0,
aσ̂2

1h(r)

δ
√

p1u2
1 + q1v2

1 + phu2
h + qhv2

h

√
N δ

1h

− δr

2
√

p1u2
1 + q1v2

1 + phu2
h + qhv2

h

√
N δ

1h





.

Then, the upper boundary Γδ
1h(s) and lower boundary −Γδ

1h(s) forms the symmetric continuation

region Λδ
1h for Z̃1h(·), implying that either system 1 or h is eliminated depends on whether Z̃1h(·)

exits the continuation region Λδ
1h from above or below. We are now ready to establish the second

important result.

Lemma 2 (Convergence of the Continuation Region). Define the symmetric continuation region

Λδ
1h for Z̃1h(·) by the upper boundary Γδ

1h(s) and lower boundary −Γδ
1h(s) as in Equation (31).

Suppose that the conditions in Theorem 1 are all satisfied. Then, under the SC, as δ → 0, we have

Γδ
1h(s) → Γ(s) = max

{
0,

a

∆
− ∆

2
· s

}
, w.p.1,

where ∆ =
√

2a. Moreover, the asymptotic region Λ, formed by Γ(s) and −Γ(s), is a symmetric

triangular region for the Brownian motion process B∆(·) as obtained in Lemma 1.

Proof. We start by analyzing the variance estimator σ̂2
1h(r) in Equation (5), which is rewritten as

follows:

σ̂2
1h(r) =

1
r

[
m1rS

2
CV(1, r) + n1rS

2
CV+CE(1, r) + mhrS

2
CV(h, r) + nhrS

2
CV+CE(h, r)

]
.

Recall that mir/r → pi and nir/r → qi = 1 − pi, i = 1 or h, w.p.1 as assumed in Theorem 1.

We first consider the case when both pi and qi are strictly positive. As δ → 0, n0 → ∞, so that

N δ
1h →∞ and r →∞, implying that S2

CV(i, r) → u2
i and S2

CV+CE(i, r) → v2
i , w.p.1. Therefore, as

δ → 0, we know that

σ̂2
1h(r) → p1u

2
1 + q1v

2
1 + phu2

h + qhv2
h, w.p.1, (32)

for any positive number pi > 0 and qi > 0, where i = 1 or h.

For the case that either pi = 0 or qi = 0, the conclusion in (32) also holds. For instance, if

pi = 0, then S2
CV(i, r) is bounded or S2

CV(i, r) → u2
i w.p.1, depending on whether mir is finite or

mir → ∞ as r → ∞. However, no matter how S2
CV(i, r) evolves, the term mir

r S2
CV(i, r) → 0 w.p.1

as r →∞ since that mir/r → 0. If pi = 1, i.e., qi = 0, similar argument can be applied to the term
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nir
r S2

CV+CE(i, r), which converges to 0 w.p.1. Therefore, for any pi ∈ [0, 1], i = 1 or h, we always

have the result in (32). Recall the definition of N δ
1h = d2a(p1u

2
1 + q1v

2
1 + phu2

h + qhv2
h)/δ2e, then

we obtain that

Γδ
1h(s) → Γ(s) = max

{
0,

a

∆
− ∆

2
· s

}
, w.p.1 as δ → 0,

which concludes the proof.

Lemma 1 demonstrates the weak convergence of Z̃1h(·) to B∆(·) on [0, 1], and Lemma 2 es-

tablishes the convergence of the corresponding continuation region Λδ
1h to the triangular region Λ.

However, elimination decisions are only made at these stopping times when the stochastic processes

first exit the region.

Let T δ
1h denote the stopping time at which Z̃1h(·) first exits the continuation region Λδ

1h, i.e.,

T δ
1h = inf

{
s :

∣∣∣Z̃1h (s)
∣∣∣ ≥ Γδ

1h(s)
}

,

and let T1h denote the stopping time at which B∆(·) first exits the triangular region Λ, i.e.,

T1h = inf {s : |B∆ (s)| ≥ Γ(s)} .

In order to bound the probability of incorrect selection, we need a stronger result to ensure that

the value at the stopping time Z̃1h(T δ
1h) can be approximated by B∆(T1h), which can be guaranteed

by the following lemma.

Lemma 3 (Convergence at Stopping Times). Suppose that the conditions in Theorem 1 are all

satisfied. Then, as δ → 0,

Z̃1h(T δ
1h) ⇒ B∆(T1h).

We omit the proof of Lemma 3 here, since it follows exactly the same logic as that of proving

Proposition 3.2 of Kim et al. [24] and Lemma 2 in Luo et al. [29]. Based on the results in Lemmas 1

to 3, we are now ready to prove Theorem 1.

Proof. We first consider the SC where θ1 − δ = θ2 = · · · = θk. Then, we can bound the PCS, i.e.,

41



the probability of selecting system 1, as follows,

lim inf
δ→0

P {select system 1} = lim inf
δ→0

[
1− P

{
k−1⋃

h=1

{system h eliminates 1}
}]

≥ 1− lim sup
δ→0

k−1∑

h=1

P {system h eliminates 1} , (33)

where (33) is due to Bonferroni inequality (e.g., refer to Kim and Nelson [23]). Note that the

probability of incorrect selection between systems 1 and h, i.e., the probability that system 1 is

eliminated by system h, is

lim sup
δ→0

P {system h eliminates 1} = lim sup
δ→0

P
{

Z̃1h

(
T δ

1h

)
≤ 0

}
(34)

= P {B∆ (T1h) ≤ 0} (35)

=
1
2
e−

a
∆

∆ =
α

k − 1
, (36)

where (34) denotes the probability that system h eliminates system 1 since Z1h(·) exits the con-

tinuation region through the lower boundary, (35) follows from Lemma 3, and (36) follows from

Fabian’s result in Fabian [12]. Plugging (36) into (33) yields

lim inf
δ→0

P {select system 1} ≥ 1−
k−1∑

h=1

α

k − 1
= 1− α.

For general cases under the IZ formulation, i.e., θ1 − δ ≥ θ2 ≥ · · · ≥ θk, the stochastic process

Z̃1h(·) defined in (27) no longer converges in distribution to the Brownian motion process B∆(·).
However, we can define

Ẑ1h (s) =
1√

p1u2
1 + q1v2

1 + phu2
h + qhv2

h

· U1(m1r) + V1(n1r)− Uh(mhr)− Vh(nhr)− (θ1 − θh − δ)r√
N δ

1h

.

By Lemma 1, we know that Ẑ1h (·) ⇒ B∆(·) as δ → 0. Moreover,

Ẑ1h (·) ≤ Z̃1h (·) , a.s. (37)

Define T̂ δ
1h as the stopping time at which Ẑ1h(·) first exits the continuation region Λδ

1h, i.e.,

T̂ δ
1h = inf

{
s :

∣∣∣Ẑ1h (s)
∣∣∣ ≥ Γδ

1h(s)
}

.
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Then, the probability of incorrect selection between systems 1 and h is

lim sup
δ→0

P {system h eliminates 1} = lim sup
δ→0

P
{

Z̃1h

(
T δ

1h

)
≤ 0

}

≤ lim sup
δ→0

P
{

Ẑ1h

(
T̂ δ

1h

)
≤ 0

}
(38)

= P {B∆ (T1h) ≤ 0}
=

α

k − 1
, (39)

where (38) follows from (37). Plugging (39) into (33) concludes the proof of the theorem.

B Fully Sequential Selection Procedures

B.1 TN-like Procedure with CV and CE

We present a TN-like procedure that can employ the CV+CE combined models described in Section

3.2. The variance estimator is computed in the first stage and then fixed in the subsequent stages.

The finite-time statistical validity can be justified by using a similar argument as in Theorem 1 of

Tsai and Nelson [43]. That is, we can guarantee that Pr{select system 1|θ1 ≥ θ2 +δ} ≥ 1−α if any

of the Combined Models I, II, III holds. In the following procedure description, we assume that

Combined Model I holds and use its corresponding notation presented in Section 3.2.1.

TN-like Procedure with CV+CE

Step 0. Setup: Select confidence level 1/k < 1−α < 1, IZ parameter δ > 0, the preliminary-stage

sample size m0 > q + 2, and the first-stage sample size n0 ≥ 2. Let a = 2η × (n0 − 1), where

η =
1
2

{[
2

(
1− (1− α)

1
k−1

)]− 2
n0−1 − 1

}
.

Step 1. Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention. For each

system i ∈ I, generate {(Yij ,Cij ,Xij) , j = 1, 2, . . . , m0} and then compute the estimator

β̂
(1)

i (m0) according to Equation (12). Let r be the observation counter. Set r = n0. For

each system i ∈ I, perform additional independent sampling to generate {(Yij ,Cij ,Xij) , j =

m0 +1,m0 +2, . . . , m0 +n0}, and then based on which, compute the controlled sample mean:

θ̂i(r) ≡ Ȳ
(1)
i [m0,m0 + r] =

1
r

m0+r∑

j=m0+1

[
E[Yij |Xij ]− (E[Cij |Xij ]− µi)

T β̂
(1)

i (m0)
]
.

For all i 6= h, calculate the sample variance of the observation difference between any two
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systems, S2
ih(r), which is analogous to S2

ih[m0,m0 + r] (defined in Equation (9)) with the

application of Combined Model I.

Step 2. Elimination:

Set Iold = I. Let

I = Iold \
{

i ∈ Iold : θ̂i(r)− θ̂h(r) < min
{

0,− a

2δ
· S2

ih(n0)
r

+
δ

2

}
for some h ∈ Iold and h 6= i

}
,

where A \B = {x : x ∈ A and x /∈ B}.

Step 3. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the

best. Otherwise, let r = r + 1 and take the rth sample (Yi(m0+r),Ci(m0+r),Xi(m0+r)) from

system i ∈ I. Update θ̂i(r) for each system i ∈ I and go to Step 2.

B.2 KN-like Procedure with Variance Updating

KN-like Procedure with Variance Updating

Step 0. Setup: Select confidence level 1/k < 1 − α < 1, IZ parameter δ > 0 and the first-stage

sample size n0 ≥ 2. Let a = − log [2α/(k − 1)].

Step 1. Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention. Obtain n0

outputs Xij , j = 1, 2, · · · , n0, from each system i ∈ I. Let r be the observation counter. Set

r = n0.

Step 2. Update: Calculate the sample mean of the first r outputs from system i

X̄i(r) =
1
r

r∑

j=1

Xij .

For all i 6= h, calculate the sample variance of the difference between systems i and h,

S2
ih(r) =

1
r − 1

r∑

j=1

(Xij −Xhj − [X̄i(r)− X̄h(r)])2.

Step 3. Elimination: Set Iold = I. Let

I = Iold \
{

i ∈ Iold : X̄i(r)− X̄h(r) < min
{

0,−a

δ
· S2

ih(r)
r

+
δ

2

}
for some h ∈ Iold and h 6= i

}
,

where A \B = {x : x ∈ A and x /∈ B}.
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Step 4. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the

best. Otherwise, let r = r + 1 and take the rth sample Xir from system i ∈ I, and go to

Step 2.

B.3 TN-like Procedure with Variance Updating

TN-like Procedure with Variance Updating

Step 0. Setup: Select confidence level 1/k < 1−α < 1, IZ parameter δ > 0, the preliminary-stage

sample size m0 > q + 2, and the first-stage sample size n0 ≥ 2. Let a = − log [2α/(k − 1)].

Step 1. Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention. For each

system i ∈ I, generate {(Yij ,Cij) , j = 1, 2, . . . , m0} and then compute the estimator β̂i(m0)

according to Equation (7). For each system i ∈ I, perform additional independent sampling

to generate {(Yij ,Cij) , j = m0 + 1, m0 + 2, . . . , m0 + n0}. Let r be the observation counter.

Set r = n0.

Step 2. Update: Calculate the sample mean of the first r outputs (which starts after the prelim-

inary stage) from system i

θ̂i(r) ≡ Ȳi [m0,m0 + r] =
1
r

m0+r∑

j=m0+1

[
Yij − (Cij − µi)

T β̂i(m0)
]
.

For all i 6= h, calculate the sample variance of the observation difference between any two

systems, S2
ih(r) ≡ S2

ih[m0, m0 + r] (defined in Equation (9)).

Step 3. Elimination: Set Iold = I. Let

I = Iold \
{

i ∈ Iold : θ̂i(r)− θ̂h(r) < min
{

0,−a

δ
· S2

ih(r)
r

+
δ

2

}
for some h ∈ Iold and h 6= i

}
,

where A \B = {x : x ∈ A and x /∈ B}.

Step 4. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the

best. Otherwise, let r = r+1 and take the rth sample
(
Yi(m0+r),Ci(m0+r)

)
from system i ∈ I,

and go to Step 2.

C Numerical Results for CV+CE

We investigate the effect of different levels of squared correlations (R2
Y,X and R2

X,C) on the efficiency

of the T N -like procedure presented in Appendix B.1 when using the Combined Models I, II, and III
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and compare them toKN and T N under the slippage and MDM configurations (see Table 9 and 10).

In Combined Model I, we set ρ = 0.7. Notice that for the MDM configuration fewer observations

from each system are consumed when the number of systems increases since the additional systems

are far from the best (i.e., more easily eliminated). It can be shown that the performance of T N
is better than KN as long as R2

Y,C is greater than or equal to 0.2, although the difference might

not be significant. We can see that the T N -like procedure applying either Combined Model I or

II is more efficient than T N even when the conditional variable is not very effective (i.e., R2
Y,X

is large). For instance, when R2
Y,C = R2

X,C = 0.2 and either Combined Model I or II is used,

the T N -like procedure (with R2
Y,X = 0.8) outperforms T N in terms of significant reductions in

ANS in all configurations. In addition, under the combined models, the efficiency improvement

when using a better conditional variable is more significant compared to that under Model 0 (with

a better control variable). For example, as shown in Table 9, when k = 100, R2
Y,X = 0.8, and

Combined Model I is used, we obtain a 47% reduction in ANS (134 to 71) when R2
X,C is increased

from 0.2 to 0.5, while the ANS reduction is around 36% (199 to 127) for procedure T N when R2
Y,C

is increased from 0.2 to 0.5. Further, in some cases employing Combined Model I or II will achieve

the best efficiency in terms of variance reduction (which cannot be obtained by KN or T N ); we

see that the ANS of CV+CE-I and CV+CE-II is as low as 30 when R2
Y,X = 0.2 and R2

X,C = 0.8.

It should be noticed that ANS = 30 means that the choice of the best system can be made right

after the first-stage observations have been collected because m0 + n0 = 30. We also find that the

T N -like procedure employing either Combined Model I or II can deliver more superior performance

when the value of R2
Y,X is decreased (or the value of R2

X,C is increased), which is consistent with

the previous analytical results. For instance, in Table 9, it can be observed that when employing

Combined Model II, k = 100, and R2
X,C = 0.2, the ANS is 159 in the case of R2

Y,X = 0.8 while

the ANS is reduced to 49 when R2
Y,X = 0.2. However, the performance of Combined Model III is

equivalent to that of Model 0 when using the same values of R2
Y,C and R2

Y,X , which implies that

the benefit of variance reduction from Combined Model III is not guaranteed. In the illustrative

example presented in Section 6, we even find that the use of Combined Model III results in a worse

performance when compared to Model 0. Overall, Combined Model I reveals a better performance

in terms of ANS than Combined Model II, although Combined Model I is more difficult to apply

in practice.
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Table 9: Performance measures for our CV+CE fully sequential procedures in comparison with
KN and T N under the SC when m0 = 10, n0 = 20, q = 1 and 1− α = 0.95.

R2
Y,C R2

Y,X R2
X,C

k = 30 k = 50 k = 100
PCS ANS PCS ANS PCS ANS

KN 0.96 180 0.97 196 0.96 205
T N 0.2 0.96 174 0.96 189 0.96 199

0.5 0.99 109 0.98 119 0.99 127
0.8 0.96 52 0.98 54 0.98 59

CV+CE-I 0.8 0.2 0.99 116 0.98 121 0.99 134
0.8 0.5 0.99 63 0.99 66 0.99 71
0.5 0.5 0.98 42 0.98 44 1 46
0.2 0.8 0.98 30 1 30 1 30

CV+CE-II 0.8 0.2 0.97 144 0.96 156 0.97 159
0.8 0.5 1 92 0.96 99 0.99 103
0.5 0.5 1 62 0.96 64 0.96 70
0.2 0.2 0.95 46 0.98 48 0.96 49
0.2 0.8 0.98 30 1 30 1 30

CV+CE-III 0.2 0.96 171 0.96 189 0.96 199
0.5 0.99 109 0.98 119 0.99 127
0.8 0.96 52 0.98 54 0.98 59

Table 10: Performance measures for our CV+CE fully sequential procedures in comparison with
KN and T N under the MDM configuration when m0 = 10, n0 = 20, q = 1 and 1− α = 0.95.

R2
Y,C R2

Y,X R2
X,C

k = 30 k = 50 k = 100
PCS ANS PCS ANS PCS ANS

KN 1 165 1 125 1 86
T N 0.2 1 155 1 114 1 81

0.5 1 96 1 74 1 57
0.8 1 50 1 45 1 38

CV+CE-I 0.8 0.2 0.98 94 1 75 1 53
0.5 0.5 1 43 0.99 38 0.99 36
0.2 0.8 0.99 31 1 30 1 30

CV+CE-II 0.8 0.2 1 122 1 96 1 66
0.5 0.5 1 58 1 49 1 42
0.2 0.2 1 45 1 41 1 36
0.2 0.8 1 31 1 31 1 31

CV+CE-III 0.2 1 148 1 110 1 81
0.5 1 96 1 74 1 57
0.8 1 50 1 45 1 38
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